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S1. Uncertainty in Downstream Tasks
We have carried out experiments to prove the effective-

ness of uncertainty-aware shape models in reconstruction
and multi-view fusion. Besides, our work opens up the pos-
sibilities for multiple downstream tasks which we defer to
future work.

Uncertainty for perception. Since our uncertainty-
aware shape model is continuous and differentiable, we can
propagate the uncertainty stored in the shape into any obser-
vation model with a given math formulation. For example,
differentiable rendering [6] is the core technology to con-
strain neural implicit representation [7, 10], and solve per-
ception tasks such as camera pose estimation [15], object
shape and pose estimation [1], and object-level SLAM [14,
13]. They are the core abilities for robotics, VR & AR, and
autonomous driving. In Figure S1, we show a simple ex-
ample of propagating the uncertainty in the 3D shape model
into any given camera view with differentiable rendering.
We sample multiple latent codes and calculate the sample
mean and variance of the rendered depth of each latent code.
Our rendered uncertainty map can be used in the differen-
tiable constraints, which naturally assigns weights for areas
with high information, to fuse multi-view observations in
challenging real scenarios with occlusion and ambiguity.

Uncertainty for planning and control. For indoor
robots or autonomous driving cars operating in real scenar-
ios, their world model (e.g., a map of objects) is uncertain
with partial, noisy, and limited observations. Our model ex-
plicitly quantifies the uncertainty and stores it in the shape
model, which can be used by the downstream modules to
make decisions. In motion planning [9], uncertainty helps
safely navigate and stay away from uncertain objects to
avoid obstacle. In robotic grasping [4], uncertainty can ef-
ficiently guide the manipulator to find a next-best-view to
better reconstruct the uncertain part of the shape to guaran-
tee the success rate of the grasps. Our model has the poten-
tial to offer an uncertainty source for those tasks.
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Figure S1. Differentiable rendering with uncertainty. We can prop-
agate the uncertainty in 3D shapes into any camera view with dif-
ferentiable rendering. The rendered uncertainty (std) can be used
by downstream tasks, such as constructing losses and propagating
gradients for pose and shape optimization and object-level SLAM.

S2. Uncertainty Analysis
S2.1. Calibration Plot

We have evaluated the effectiveness of using uncertainty
on reconstruction and multi-view fusion. We further evalu-
ate the estimated uncertainty quality of correlating with the
accuracy. An estimated uncertainty is well-calibrated when
the estimation errors are lying into the predicted uncertain
threshold. We introduce how we draw the calibration plot
in Sec S2.2.

We present the calibration plot on the Pix3D dataset in
Figure S2, where the X axis shows the predicted probabil-
ity, and the Y axis counts the real frequency where the esti-
mation errors lying within the predicted uncertain threshold.
A well-calibrated plot should be close to the line Y = X ,
where the real frequency aligns perfectly with the predicted
probability. Our method outputs uncertainty in latent space
and the signed distance space, as in Figure 2. The uncer-
tainty in the latent space is directly output from the Encoder,



Figure S2. The calibration plot on the Pix3D dataset. The plots
for the uncertainty of the latent space and SDF space are shown
separately. We further show a baseline outputting equal uncertain
of 1. Our approach is siginficantly better calibrated (closer to Y =
X line) than the baseline.

and then propagates using Monte-carlo sampling through
the decoder to the signed distance space, as described in
Sec 3.2. We draw calibration plots for both of them. We
use a baseline with an equal variance of 1 for each code
dimension. We can see that it is non-trivial to output a well-
calibrated uncertainty for both the latent code and the 3D
SDF values. The calibration plots of the baseline method
are far away from the line of Y = X , while ours is signif-
icantly closer, which shows a much better calibrated result
than the baseline. At the same time, we still see an oppor-
tunity for further improvement, e.g., with temperature scal-
ing [3]. We hope our approach can serve as a benchmark
for future research that can output better uncertainty for 3D
neural shape models.

S2.2. Drawing a Calibration Plot

We present a calibration plot in Sec S2.1. We describe in
detail here the method to draw a calibration plot for the la-
tent space and the signed distance function space. Given N
1-dimensional random variables {Xi}Ni=1, for each Xi, our
algorithm outputs the estimated univariate Gaussian distri-
butions with the mean and variance of {(µi, σ

2
i )}Ni=1. To

draw a calibration plot, we first uniformly sample T prob-
ability pt in the range of (0, 1). For each pt, we count the
real frequency Ft that the estimation errors {|Xi − µi|}Ni=1

lying inside the predicted threshold rti :

Ft =
1

N
ΣN

i=1I|Xi−µi|≤rti
(1)

where IC is an indicator function outputting 1 when C
holds, and 0 otherwise. The predicted threshold rti can be
calculated using the quantile function, which is the inverse
cumulative distribution function. For a normal distribution,

the cumulative distribution function calculates the probabil-
ity p of a random variable X lies inside a given range x:

FX(x) := Pr(|X| ≤ x) = p (2)

The quantile function inversely calculates the range of x
that the variable X lies inside with a given probability p:

Q(p) = F−1
X (p) = x (3)

For a normal distribution, the value of Q(p) can be directly
queried given any p. For example, Q(0.9984) ≈ 3 for a
normal Gaussian, which is the 3-σ principle. For a Gaus-
sian distribution with mean and variance of (µi, σ

2
i ), we can

calculate the predicted threshold rti = Q(pt)σi by multi-
plying the standard deviation. Then we can count the real
frequency Ft according to Eq. 1. Finally, we can draw a
plot with the sampled probability {pt}Tt=1 as the X axis,
and the counted frequency {Ft}Tt=1 as the Y axis. When
drawing the calibration plot, we consider each dimensions
of each latent codes independently, and also consider each
SDF values independently.

S2.3. Metric Evaluation

We quantitatively use two metrics, Energy Score (ES)
and Negative Log Likelihood (NLL) to evaluate the calibra-
tion and sharpness of the estimated SDF uncertainty in Ta-
ble S1. We show results for the points near the object’s sur-
face (Surface), far away from the surface (Non-Surface) by
a distance threshold of 0.01, and all points (All Space) sepa-
rately. We ablade two models trained with ES and NLL sep-
arately. Considering the lack of an uncertainty-aware shape
model in the literature, we use a baseline that outputs equal
uncertainty of 1. As expected, our two uncertainty mod-
els both outperform the baseline by an order of magnitude,
which shows that the estimated uncertainty contains much
more valid information. Compared with the NLL model,
the ES model can output slightly better uncertainty, but an
obviously better accuracy of the 3D reconstruction. We
notice the uncertainty of the points near the surface (Sur-
face) is better calibrated than those far away from the sur-
face (Non-Surface). The points near the surface are critical
for the process of Marching Cubes to reconstruct objects’
mesh and they model the uncertainty of the mesh surface.
We think this is because, during the training of the Decoder,
more points are sampled near the surface where the Decoder
is more capable of estimating the SDFs, which benefits the
uncertainty estimation too.

S2.4. Distribution of the SDF Values

We propagate a Gaussian distribution in the latent space
through the Decoder to generate the distributions of SDF
values. However, the Decoder, with multiple non-linear ac-
tivation layers, is a highly non-linear function. Thus, the



All Space Surface Non-Surface Reconstruction

Methods ES ↓ NLL ↓ ES ↓ NLL ↓ ES ↓ NLL ↓ IoU ↑
Equal Var 0.1932 -0.203 0.1914 -0.210 0.1939 -0.201 /
Ours-NLL 0.0353 -2.720 0.0235 -3.065 0.0399 -2.587 0.299
Ours-ES 0.0338 -2.753 0.0221 -3.095 0.0384 -2.621 0.335

Table S1. Uncertainty analysis in the 3D SDF space. Ours trained with ES shows better performance compared with Ours trained with
NLL model, and much better compared with the baseline outputting equal uncertainty of 1.

SDF distributions are not guaranteed to be Gaussian again.
We show the distribution of the SDF values of 4 points with
different distances to the object surface in Figure S3. Their
distributions are calculated through Monte-carlo sampling
with a sample num of 1000. We can see that for the points
far away from the surface (the two figures in the bottom),
the distributions of the SDFs value only have one mode and
can approximately form a Gaussian distribution. We notice
an interesting findings for the SDF values near the surface
(the two figures in the top). They do not follow a Gaussian
distribution perfectly but have a peak much larger than other
areas in the negative areas near the surface. We assume this
is a bias introduced during training where the Decoder is
trained with unbalanced samples of points inside and out-
side surface. The origin DeepSDF paper [10] truncates SDF
values inside the surface to −0.01. The trained Decoder
will tend to output a narrow range of negative values, while
a much larger range output space for positive values.

There are several ways to model the distribution of the
SDF values depending on the downstream tasks. e.g., in
the qualitative evaluation, we use the sample variance of
each vertices of the mesh to approximately colorize it with
uncertainty. For other tasks that need to accurately propa-
gate uncertainty, e.g., differentiable rendering, a parametric
approximation of the SDF distibution, e.g., Gaussian, will
make the process easier to tackle. It will be interesting fu-
ture work to explore more expressive distribution for SDF
values, e.g., Gaussian-mixture models [11].

S3. More Qualitative Results

We show more results of multi-view fusion in Figure S4.
When fusing views with more information about the ob-
jects, our method decreases the uncertainty of the recon-
structed shape and gets better results than the baseline. We
notice interesting findings that some semantic parts of the
objects, e.g., arms, legs, backs, and thin structures, can be
well identified by uncertainty. We also notice that for the
first example, half of the 10th view including the chair arm
is occluded and is very challenging, so fusing this view
slightly increases the uncertainty of the arm. It will be
valuable future work to deeply investigate the relationship
among the semantic parts of 3D shapes, the occluded image
areas, and the uncertainty in the encoded shape latent space.

Figure S3. Distribution of the SDF values after propagating the
latent code distribution to the SDF space with Monte-carlo sam-
pling. Four points with distance near and far from the surface
(SDF=0) are shown. The groundtruth value (gt), estimated value
(estimation) and the sample mean are shown. The estimation is
close to the groudntruth value and the distribution covers the error.

S4. Computation Analysis

We show the inference time with a resolution of 128 for
the decoder and a number of N = 10 for the Monte Carlo
sampling on an A100 GPU in Table S2. To generate the
uncertainty for a mesh, only a small computation overhead
is needed for the mesh vertices (2K points). However, if
necessary, the uncertainty for a whole SDF field is more
expensive, which consists of 1283 (2M) points. We inherit
the design of DeepSDF [10] as Decoder, which is the bot-
tleneck of our computation. Depending on the downstream
tasks, we can use multiple parameters as trade-off between
effectiveness and efficiency, such as the sampling times and
shape resolution. Although the Monte-Carlo sampling ap-
proach used to propagate uncertainty through the decoder
to the SDF grid is computationally expensive, we prove it is
possible to estimate uncertainty with the decoder fixed, and
leave it as future work further improvements in efficiency
for global SDF uncertainty estimation., Methods such as lo-
cal linearization of the nonlinear decoder, or making the de-
coder to direct output uncertainty can be used in this context
to reduce this computational cost. For multi-view fusion,
thanks to the fusion in the latent space, we only need 0.1
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Figure S4. Qualitative results of multi-view fusion on the Pix3D dataset (part 2). Results after fusing 1 to 10 input images are given.

ms to fuse 10 views and get the final fused latent code with
uncertainty.

S5. Discussion and Future Work
Multi-categories. In this work, we train each category

(chairs, and tables) independently and separately, as the

same as the previous work (DeepSDF [10], FroDO [12]).
With the success of large language models [8, 5] to show
the effectiveness of the scaling up, and the availability of
new 3D object datasets [2] much larger than ShapeNet, it
will be interesting to explore an uncertainty-aware general
object model that can be used for multiple categories of ob-



Modules SDF
Field Mesh

Mesh
w/ Uncer.

SDF Field
w/ Uncer.

Encoder 0.06

Decoder 0.49

Marching Cubes - 0.13 0.13 -

Decode Uncer. - - 0.001 x 10 -

Decode Uncer. - - - 0.49 x 10

Total 0.55 0.68 0.69 5.45
Table S2. Computation analysis (Unit: s). We sample N = 10
times during Monte-carlo sampling. When generating mesh with
uncertainty, only the mesh vertices (around 2K) are propagated.
When generating SDF field with uncertainty, 1283 (2M) points
are propagated.

jects.
Decoupling the shape decoder and the image encoder.

We take the training strategy of first training the decoder,
and then fixing the decoder to train the encoder, instead of
end-to-end training. In this way, the decoder acts as an inde-
pendent shape representation in 3D that has no relationship
with input modalities. Thus, we can easily support new con-
ditional modalities by training a new encoder, and leverage
the prior knowledge stored in the latent space of the shape
decoder. It remains valuable future work to extend to other
modalities, e.g., texts, depth maps, pointclouds, by training
a new corresponding encoder and fusing the results in the
latent space in a similar way to the multi-view fusion.
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