
Supplementary Material for
MetaVers: Meta-Learned Versatile Representations

for Personalized Federated Learning

We summarize the contents of the Supplementary ma-
terial as follows. Section 1 provides the impelemntation
details of the experiments, including the dataset splitting and
the hyperparameter optimizations. Table 1 in Section 1 fully
shows the result of Standard PFL Benchmarks with SEM
(Standard Error of the Mean). Additional experiments are
presented in Section 2. Finally, Section 5 provides the proofs
of Lemma 1 and Theorem 1 in the main paper.

1. Implementation Details

Simulation environment: We implement MetaVers
and the baseline methods using the PyTorch framework. The
experiments were conducted on NVIDIA Quadro RTX 8000,
having 48GB of memory with python 3.8.5, PyTorch 1.7.1,
Torchvision 0.8.2, and CUDA 11.0.

Re-implementation of prior methods: Here we describe
the re-implementation of the existing methods. As stated in
the main paper, we tested all related methods in Standard
PFL Benchmarks that is used in [1, 18], i.e., Standard PFL
Benchmarks. For FedProto in Standard PFL Benchmarks,
we follow the same configurations in the original paper of
FedProto [19]. We search for the best hyperparameter λ,
which is the weighting of the prototype-based regularization
loss. It is grid searched in {0, 0.1, 1, 2}. In the original
paper, FedProto assumes the full participation of clients
at every round, which is impractical. Therefore, we allow
full participation of all clients only for the first round of
communication, then restrict the number of active clients to
5 as we did for other methods. For Per-FedAvg, experiments
are conducted with the first-order (FO) MAML [7], and we
grid search for the best β value in {0.01, 0.005, 0.001},
which is the inner-update learning rate. For kNN-Per, we
tune the interpolation hyperparameter λm via grid search on
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and set the
number of nearest neighbors k as 10 by following the setting
of the original paper [13]. For FedRep, the number of local
updates for the representation is set to 1 for CIFAR-10 and
5 for CIFAR-100 by following the settings of the original
paper [4]. In the case of CINIC-10, the corresponding update
number is searched over the range of {1, 5}. For the case

of FedBABU, 10 fine-tuning steps are allowed in the testing
for all cases.

1.1. Episode Construction

Number of shots in support and query: For the experi-
ments in the main paper, we construct the training episode
E with the support set with K samples per class, and the
query set with Q samples per class. For the Generalization
on Novel Classes experiment in subsection 4.2, episodes are
composed of (K,Q) = (5, 15) for all datasets, i.e., CIFAR-
100 and miniImageNet. Therefore, each training episode is
set to have 20 samples per class. For Standard PFL Bench-
marks, the total number of samples that are distributed to
each client is different for different datasets due to the widely-
varying number of samples per client. (K,Q) value differs
depending on the dataset because the number of samples that
each local client can use to construct the episode is different.
We set (K,Q) of each client to be (20, 30), (10, 20), and
(25, 35) for CIFAR-10, CINIC-10, and CIFAR-100, respec-
tively.

Episode for extremely-small local clients: For the ex-
periment on CIFAR-100 with 500 clients, some clients are
insufficient data samples to create such episodes because
the average number of samples per class in each client is
just 8. Consequently, we compose the support set with five
or fewer samples and let the query set contain the remain-
ing samples. Table 2 shows the test accuracies of over 500
clients on the CIFAR-100 according to the value of K. In
the case of K = 3 is shown to be the best, so the support set
of the training episode is constructed with 3 samples for the
case of Client 500 in CIFAR-100. Due to the same reason,
(K,Q) = (20, 30) is used for 500 clients on the CINIC-10,
which is a slightly smaller episode than 50 and 100 client
cases with (K,Q) = (25, 35).

1.2. Hyperparameters for MetaVers

For MetaVers, we use the validation set for hyperpa-
rameter tuning and early stopping. We adopt the Adam
optimizer and search for the optimal learning rates over the
range of {0.1, 0.05, 0.01, 0.005, 0.001}. Also, we search
the best hyperparameter γ over the range of {0.1, 0.2, 0.3,

1

Table 1. Test accuracy (± SEM) on CIFAR-10, CIFAR-100, and CINIC-10.

CIFAR-10 CIFAR-100 CINIC-10

clients 50 100 500 50 100 500 50 100 500
samples/client 800 400 80 800 400 80 1800 900 180

Local 84.8 ± 0.1 82.1 ± 0.2 76.2 ± 0.2 49.8 ± 0.2 44.5 ± 0.4 31.0 ± 0.3 58.4 ± 0.2 57.4 ± 0.4 50.3 ± 0.0
FedAvg [14] 56.4 ± 0.5 59.7 ± 0.5 54.0 ± 0.5 23.6 ± 0.2 24.0 ± 0.2 20.4 ± 0.0 45.6 ± 0.4 44.7 ± 0.5 45.7 ± 0.5

LG-FedAvg [11] 87.9 ± 0.3 83.6 ± 0.7 64.7 ± 0.7 43.6 ± 0.2 37.5 ± 0.9 20.3 ± 0.5 59.5 ± 1.1 59.9 ± 2.1 52.5 ± 0.8
pFedMe [5] 86.4 ± 0.8 85.0 ± 0.3 80.3 ± 0.5 49.8 ± 0.5 47.7 ± 0.4 32.5 ± 0.8 69.9 ± 0.5 68.9 ± 0.7 58.8 ± 0.1
FedProto [19] 85.9 ± 0.7 79.0 ± 0.4 51.0 ± 0.0 47.8 ± 0.5 17.8 ± 0.1 10.9 ± 0.1 58.2 ± 0.7 40.3 ± 0.8 26.0 ± 0.0
Per-FedAvg [2] 71.1 ± 1.5 79.1 ± 3.7 67.7 ± 1.9 38.2 ± 2.0 34.1 ± 0.4 32.8 ± 1.7 53.8 ± 0.8 53.5 ± 0.6 59.6 ± 0.7
pFedHN [18] 90.2 ± 0.6 87.4 ± 0.2 83.2 ± 0.8 60.0 ± 1.0 52.3 ± 0.5 34.1 ± 0.1 70.4 ± 0.4 69.4 ± 0.5 64.2 ± 0.1
pFedGP [1] 89.2 ± 0.3 88.8 ± 0.2 87.6 ± 0.4 63.3 ± 0.1 61.3 ± 0.2 50.6 ± 0.2 71.8 ± 0.3 71.3 ± 0.4 68.1 ± 0.3
FedPer [2] 83.8 ± 0.8 81.5 ± 0.5 76.8 ± 1.2 48.3 ± 0.6 43.6 ± 0.2 25.6 ± 0.3 70.6 ± 0.2 68.4 ± 0.5 62.2 ± 0.1
FedRep [4] 82.4 ± 1.5 80.7 ± 1.0 77.3 ± 0.8 45.1 ± 2.8 38.8 ± 1.1 30.2 ± 0.4 67.1 ± 1.1 64.7 ± 0.0 61.5 ± 0.5
kNN-Per [13] 89.6 ± 0.6 89.5 ± 0.4 84.8 ± 0.4 61.8 ± 0.3 56.0 ± 0.3 38.7 ± 0.7 71.8 ± 0.2 72.0 ± 0.2 69.2 ± 0.6
FedBABU [15] 87.2 ± 1.0 86.2 ± 0.6 85.5 ± 0.5 53.4 ± 0.4 52.3 ± 0.7 49.0 ± 0.6 68.7 ± 0.4 66.5 ± 0.2 67.8 ± 1.3

Ours
(K,Q) (20, 30) (20, 30) (20, R∗) (10, 20) (10, 20) (3, R∗) (25, 35) (25, 35) (20, R∗)
MetaVers (only LT) 90.3 ± 0.2 89.7 ± 0.2 89.6 ± 0.1 64.7 ± 0.2 62.9 ± 0.3 46.6 ± 0.2 72.6 ± 0.4 72.7 ± 0.2 71.9 ± 0.2
MetaVers (only LS) 89.9 ± 0.3 88.6 ± 0.1 88.1 ± 0.1 66.7 ± 0.1 64.6 ± 0.2 54.4 ± 0.3 72.8 ± 0.3 72.5 ± 0.2 71.7 ± 0.1
MetaVers 90.8 ± 0.3 90.2 ± 0.2 89.9 ± 0.3 66.7 ± 0.0 64.8 ± 0.1 55.8 ± 0.1 73.2 ± 0.4 73.2 ± 0.3 72.5 ± 0.1

Samples/client indicates the mean number of samples per local client in each case.
(K,Q) indicates the number of samples per class corresponding to the support set and the query set constituting the training episode.
R∗ indicates the remaining data samples per class after securing K samples by prioritizing the support set configuration.

Table 2. Searching for the best support set size for the Client-500 case of the CIFAR-100 benchmark.

K (Samples per Class) 1 2 3 4 5

Accuracy (%) 53.4 55.5 55.8 54.6 54.6

0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, which balances the cross-entropy
loss term and the triplet loss term. Table 3 shows the effect
of the balancing hyparparmeter γ.

1.3. Interval Value W

The server considers the past global margin values with
a fixed interval of W rounds to stabilize the global margin
value. We set that W to be 50, so the moving average of
the past global margin values over 50 rounds is used. Also,
for the first 50 rounds of training, where not enough margin
values are collected to calculate the global margin value, we
use only the cross-entropy loss term. After the 50 rounds,
we adopt triplet loss to find the large-margin representation,
as stated in the main paper.

1.4. Details for Standard PFL Benchmarks

Accuracy table: Table 1 fully shows the test accuracy
with SEM (Standard Error of the Mean) over three random
seeds of all cases. Also, in the bottom part of the table, we
show the full accuracies with SEM of loss term ablation

studies. As shown in the main paper, i.e., the combined loss
increases accuracies in the CINIC-10 cases, consistent gains
are shown for all cases from three benchmarks.

Data split: As aforementioned, we follow the same data
splits in [1, 18]. The numbers of training samples of the
datasets are 40K, 40K, and 90K for CIFAR-10, CIFAR-
100, and CINIC-10, respectively. In each local client, the
training and test sets have the same class configuration, but
the different clients can have different class configurations,
which means the heterogeneous setting. To construct the
setting, for each client i, and class k, a uniform probability
pi,k ∼ U(.4, .6) is sampled to assign pi,k/

∑
j pj,k samples

of the class k to the client i. Therefore, local clients have
samples that do not overlap, and the number of samples per
client is not the same but slightly different.

1.5. Generalization on Novel Classes

Implementation details: Following the same model ar-
chitecture introduced in [7, 16], we use a CNN model with
four 3x3 convolutional layers where batch normalization,

Table 3. Test accuracy (± SEM) of MetaVers under varting hyparparmeter γ on CIFAR-10, CIFAR-100, and CINIC-10

CIFAR-10 CIFAR-100 CINIC-10

clients 50 100 500 50 100 500 50 100 500

balancing parameter γ
0.1 90.6 ± 0.3 90.0 ± 0.2 89.8 ± 0.2 65.1 ± 0.2 64.7 ± 0.1 52.1 ± 0.2 72.0 ± 0.6 72.4 ± 0.4 71.7 ± 0.1
0.2 90.7 ± 0.3 90.1 ± 0.2 89.9 ± 0.3 65.7 ± 0.1 63.8 ± 0.2 53.6 ± 0.3 72.4 ± 0.6 72.8 ± 0.4 72.1 ± 0.1
0.3 90.6 ± 0.3 90.2 ± 0.2 89.7 ± 0.2 66.2 ± 0.3 64.4 ± 0.0 54.1 ± 0.4 72.8 ± 0.4 72.9 ± 0.3 72.2 ± 0.1
0.4 90.8 ± 0.3 89.8 ± 0.2 89.6 ± 0.2 66.4 ± 0.2 64.5 ± 0.2 55.2 ± 0.2 73.2 ± 0.5 73.1 ± 0.3 72.3 ± 0.1
0.5 90.8 ± 0.4 89.9 ± 0.2 89.6 ± 0.1 66.7 ± 0.1 64.8 ± 0.1 54.2 ± 0.2 73.2 ± 0.4 73.2 ± 0.3 72.5 ± 0.1
0.6 90.7 ± 0.4 89.9 ± 0.1 89.4 ± 0.3 66.7 ± 0.0 64.8 ± 0.1 55.8 ± 0.1 73.2 ± 0.4 73.2 ± 0.4 72.4 ± 0.1
0.7 90.6 ± 0.4 89.8 ± 0.2 89.5 ± 0.2 66.2 ± 0.1 64.8 ± 0.1 55.7 ± 0.3 73.1 ± 0.4 73.2 ± 0.3 72.5 ± 0.1
0.8 90.1 ± 0.5 89.9 ± 0.1 89.1 ± 0.4 66.7 ± 0.1 64.5 ± 0.3 55.6 ± 0.3 73.0 ± 0.5 73.2 ± 0.3 72.3 ± 0.0
0.9 89.9 ± 0.5 89.2 ± 0.1 89.9 ± 0.3 66.6 ± 0.1 64.8 ± 0.1 55.7 ± 0.3 73.2 ± 0.6 73.2 ± 0.4 72.5 ± 0.2

ReLU, and a 2 x 2 max-pooling layer follow each one. In
the case of CIFAR-100, we omit the last two max-pooling
layers for the feature map size as done in [16]. We opti-
mize the model using Adam optimizer with a learning rate
of 0.001. Also, we use the learning rate decaying at every
5,000 epochs with a decaying factor of 0.5.

2. Additional Ablation Study

2.1. Fixed Margin

We additionally explore the optimal margin value with
fixed-margin value in the range of {0.25, 0.5, 0.75, 1.0,
1.25, 1.5, 3.0} and adaptive margin when the learning is
done only with the triplet loss term. As shown in Table 4,
when the margin value is 0.75, it generally shows the best
or near-best performance in all cases. Therefore, we use the
fixed-margin value 0.75 when comparing MetaVers and
only-triplet-loss cases of Table 4 in the main paper and Table
1 in Supplementary material.

2.2. Effect of the Way in the Few-Shot Episode

We examine the impact of the way in the episodic train-
ing, which is the number of different classes that are selected
in each episode. ‘Way’ indicates the number of classes
to be classified in each episode. Therefore, in the case of
CIFAR-10, there are only two classes in each local dataset,
so the ablation experiments are conducted on CINIC-10
and CIFAR-100. First, we evaluate the model by changing
the way values from 2 to 10 for CIFAR-100 and 2 to 4 for
CINIC-10. We want to point out that the maximum way
can be adopted for CIFAR-100 and CINIC-10 are 10 and
4, respectively. In addition, we tested the scenario in that
each client creates an episode in a randomly selected way in
the possible ranges of ways. To be specific, in CIFAR-100,
we randomly assign the number of ways from 2 to 10 for

each client, and we select ways from 2 to 4 for CINIC-10.
Table 5 shows that the way value significantly impacts perfor-
mance, and keeping it as large as possible is the best choice
for achieving better performance. However, even when the
way is reduced to 50% of the maximum (refer to way 5 for
CIFAR-100 and way 2 for CINIC-10), it is still comparable
to other runner-up algorithms or achieves state-of-the-art
performance. Besides, the performance does not decrease
significantly in the random way setting. We emphasize that
MetaVers successfully achieves a generalized represen-
tation even when each local client is allowed to construct
its own episode with a randomly-varying number of target
classes.

2.3. Fine-tuning in Testing

Prior methods that aim to train a global representation,
such as FedBABU of [15], acquire further performance gain
via fine-tuning in testing. The reasons for the gain are the
further personalization of the head, i.e., classifiers, for well-
fitted classification weights, and the further training of the
body, i.e., a feature extractor, for better representation ability.
However, MetaVers trains a representation via distance-
based meta-learning, so we conjecture that the representation
of MetaVers does not require any further fine-tuning steps.
Also, MetaVers utilizes prototypes as classifiers. When
the fine-tuning is done in testing, i.e., the learned represen-
tation is further trained via few-shot episodes at each local
client, MetaVers shows performance degradation due to
the overfitting to the local training data. To be specific, the
performance degrades from 64.8% to 59.8% when a sin-
gle step of fine-tuning is used for the case of CIFAR-100
with 100 clients. It implies that MetaVers achieves a suf-
ficiently trained global representation that performs well
across heterogeneous clients via federation.

Table 4. MetaVers with only LT

CIFAR-10 CIFAR-100 CINIC-10

clients 50 100 500 50 100 500 50 100 500

LT with fixed margin m∗

0.25 90.2 ± 0.2 89.4 ± 0.2 89.0 ± 0.1 64.7 ± 0.2 62.6 ± 0.2 46.4 ± 0.2 72.4 ± 0.4 72.5 ± 0.2 71.6 ± 0.0
0.50 90.3 ± 0.3 89.6 ± 0.0 89.6 ± 0.1 64.5 ± 0.2 62.9 ± 0.3 46.2 ± 0.3 72.5 ± 0.4 72.7 ± 0.2 71.9 ± 0.2
0.75 90.2 ± 0.3 89.7 ± 0.1 89.6 ± 0.1 64.6 ± 0.1 62.7 ± 0.2 46.5 ± 0.3 72.6 ± 0.5 72.7 ± 0.2 71.9 ± 0.2
1.00 90.3 ± 0.2 89.5 ± 0.1 89.4 ± 0.2 64.4 ± 0.3 62.4 ± 0.1 46.6 ± 0.3 72.4 ± 0.2 72.7 ± 0.2 71.7 ± 0.0
1.25 90.2 ± 0.2 89.6 ± 0.2 89.6 ± 0.1 64.2 ± 0.1 62.6 ± 0.2 46.2 ± 0.2 72.5 ± 0.3 72.7 ± 0.2 71.5 ± 0.1
1.50 90.2 ± 0.2 89.7 ± 0.2 89.5 ± 0.1 64.2 ± 0.2 62.6 ± 0.2 46.6 ± 0.2 72.6 ± 0.4 72.5 ± 0.1 71.5 ± 0.0
3.00 90.2 ± 0.3 89.6 ± 0.1 89.4 ± 0.2 64.0 ± 0.1 62.5 ± 0.1 46.5 ± 0.3 72.4 ± 0.5 72.4 ± 0.2 71.7 ± 0.0

LT with adaptive margin 90.3 ± 0.3 90.0 ± 0.3 89.7 ± 0.1 64.3 ± 0.1 62.5 ± 0.2 46.7 ± 0.2 71.5 ± 0.3 71.4 ± 0.1 70.7 ± 0.1

MetaVers 90.8 ± 0.3 90.2 ± 0.2 89.9 ± 0.3 66.7 ± 0.0 64.8 ± 0.1 55.8 ± 0.1 73.2 ± 0.4 73.2 ± 0.3 72.5 ± 0.1

Table 5. MetaVers with the lower way setting.

CIFAR-100 CINIC-10

clients # clients
Way 50 100 500 Way 50 100 500

10 66.7 ± 0.0 64.8 ± 0.1 55.8 ± 0.1 4 73.2 ± 0.4 73.2 ± 0.3 72.5 ± 0.1
5 64.7 ± 0.2 63.5 ± 0.2 51.6 ± 0.2 3 72.4 ± 0.4 72.2 ± 0.1 71.6 ± 0.1
2 57.5 ± 0.4 56.2 ± 0.1 41.8 ± 0.4 2 70.6 ± 0.6 70.7 ± 0.2 69.9 ± 0.2

Random way 64.7 ± 0.2 63.0 ± 0.4 51.4 ± 0.2 Random way 71.6 ± 0.5 72.1 ± 0.1 71.4 ± 0.1

2.4. Discussions on Additional Communications
Burden

The additional communication burden from the margin-
value sharing between clients and the server is negligible
because the margin value is a simple scalar that is extremely
smaller than the model parameter size.

3. Additional Experiments

3.1. Comparison with Centralized Meta-Learning

We try to compare MetaVers with the centralized ver-
sion of meta-learning. We conjecture that when the data is
not decentralized, then the meta-learning can explore more
diverse episodes in the whole dataset so that the generaliza-
tion performance can be improved further. We want to show
how much MetaVers can converge to the oracle central-
ized setting. For the centralized version, we set all settings
identically to MetaVers, including hyperparameters and
inference procedures. The only difference is that it can cre-
ate the training episode by accessing the full dataset. But
surprisingly, according to the results in Table 6, the perfor-
mance difference between our decentralized framework, i.e.,
MetaVers and the centralized version is not significant
except in the case of Client 500 in CIFAR-100, where the
extremely small number of samples are used for construct-

ing local episodes. We can conclude that our method is an
effective model that generalizes well on decentralized data
samples, even with the limited diversity of episodes due to
the decentralized regime.

4. Evaluation on Other Benchmarks and Larger
Architecture

4.1. Testing on PFL Benchmarks based on Dirichlet
Allocation

Recently, a work of [3] suggests a PFL benchmark with
CIFAR-10 by imposing heterogeneity through Dirichlet allo-
cation. We borrow the same settings in [3]: CIFAR10-α0.1,
CIFAR10-α0.5, and CIFAR10-α5 cases are considered with
100 clients. In each round, 20 active clients participate in
the federation. For the model architecture, a convolutional
neural network with two 5x5 convolutional layers followed
by a max-pooling layer, batch normalization, ReLU, and two
dense layers. In Table 7, test accuracies on three CIFAR-
10-based benchmarks are shown. The accuracies of prior
works are borrowed from the evaluation results in [3]. We
show the simplest form of each algorithm without any fine-
tuning. As aforementioned, MetaVers also does not adopt
the fine-tuning steps in testing. MetaVers shows the out-
standing performance on CIFAR10-α0.1, which imposes the
strongest heterogeneity across clients. When the data distri-

Table 6. Comparison with Centralized Learning on CIFAR-10, CIFAR-100, and CINIC-10.

CIFAR-10 CIFAR-100 CINIC-10

clients 50 100 500 50 100 500 50 100 500

Centralized 90.9 ± 0.4 90.7 ± 0.3 90.7 ± 0.1 67.1 ± 0.1 66.5 ± 0.1 61.0 ± 0.3 73.1 ± 0.5 73.5 ± 0.2 72.9 ± 0.2
MetaVers (Decentralized) 90.8 ± 0.3 90.2 ± 0.2 89.9 ± 0.3 66.7 ± 0.0 64.8 ± 0.1 55.8 ± 0.1 73.2 ± 0.4 73.2 ± 0.3 72.5 ± 0.1

bution becomes homogeneous by increasing α, the perfor-
mance gain diminishes so that MetaVers shows worse per-
formance than others. We emphasize that the meta-learning
framework used by MetaVers is shown to be effective in
heterogeneous cases where the task and data distribution
diverges across different mini-batches. We conjecture that
the nature of meta-learning is the reason for the performance
trend across different α values.

4.2. Results for ResNet architecture

Standard PFL Benchmarks are based on the LeNet ar-
chitecture, which is quite small than cutting-edge backbone
architecture. We want to point out that many prior works for
PFL are still based on quite small architectures. To show the
scalability of MetaVers, we conduct experiments using
ResNet18 [8], which is a popular large architecture. All ex-
perimental settings, including the number of communication
rounds and the active clients, are the same as in the LeNet-
based experiments. Table 8 is the result of the experiment.
MetaVers shows the highest performance in most cases, as
in the experiment for the LeNet architecture. We clearly con-
firm MetaVers is also effective in training larger backbone
architectures. Also, we want to emphasize that MetaVers
achieves the highest performance in every case in CINIC-
10 with significant margins, which is consistent with the
LeNet-based experiments.

5. Convergence Analysis of MetaVers

Notations: Ei represents a training episode at client i.
θ(τ) indicates the global model parameter at the beginning
of the round τ . θ(τ)i is the locally updated model parameter
after an episodic-training at client i in the round τ . Li(θ; Ei)
is the local loss value based on the model parameter θ and the
given training episode Ei from client i. With these notations,
let us introduce some definitions as follow.

Definition 1. (Expectation of Local Loss and Gradients)

Li(θ
(τ)) ≜ EEi∼Di

[
Li(θ

(τ); Ei)
]

(1)

∇Li(θ
(τ)) ≜ EEi∼Di

[
∇Li(θ

(τ); Ei)
]

(2)

Definition 2. (Aggregated Gradient Across Clients)

∇L(θ(τ);E) ≜
1

n

n∑
i=1

∇Li(θ
(τ); Ei), (3)

where E = {Ei}ni=1 is the set of training episodes of clients.
Definition 3. (Expectation of aggregated gradient)

∇L(θ(τ)) ≜ EE

[
∇L(θ(τ);E)

]
=

1

n

n∑
i=1

∇Li(θ
(τ)) (4)

We use the following assumptions, which are similar to the
settings introduced by the work of [19].

Assumption 1. For any client i ∈ [1, n], the loss function
is L-Lipschitz smooth:

∥∇Li(θ)−∇Li(ϕ)∥ ≤ L∥θ − ϕ∥. (5)

Assumption 2. The inner-product between local gradient
with an episode Ei and the averaged gradient is bounded:

α∥∇L(θ(τ);E)∥2 ≤ ∇Li(θ
(τ); Ei) · ∇L(θ(τ);E) (6)

where α ∈ R and α ∈ (0, 1].
Assumption 3. For any set of episodes E , the variance

of the global gradients is bounded:

EE

[
∥∇L(θ(τ);E)−∇L(θ(τ))∥2

]
≤ σ2. (7)

Lemma 1. For every client i ∈ [1, n], the difference of
local loss values at round τ + 1 and τ is bounded:

Li(θ
(τ+1))− Li(θ

(τ)) ≤ (−ηα+
1

2
Lη2)

(
∥∇L(θ(τ))∥2 + σ2

)
,

(8)

where η is the learning rate of local update.
Theorem 1. (Convergence) For any client i ∈ [1, n]

with a learning rate η∗ < 2α
L , the local loss is a decreasing

function in the number of rounds:

Li(θ
(τ+t)) < Li(θ

(τ)). (9)

Table 7. Test accuracy on CIFAR10-α0.1, CIFAR10-α0.5, and CIFAR10-α5 benchmarks from [3].

CIFAR10-α0.1 CIFAR10-α0.5 CIFAR10-α5

FedAvg [14] 57.71 70.89 73.87
FedOpt [17] 37.30 49.61 54.66
pFedMe [5] 56.46 70.63 73.74
FedBN [10] 57.59 68.28 72.17
Ditto [9] 49.77 67.65 71.97
FedEM [12] 54.52 70.56 73.36

MetaVers (Ours) 81.41 73.06 67.67

Table 8. Test accuracy (± SEM) over 50, 100, 500 clients on CIFAR-10, CIFAR-100, and CINIC-10 using ResNet18.

CIFAR-10 CIFAR-100 CINIC-10

clients 50 100 500 50 100 500 50 100 500
samples/client 800 400 80 800 400 80 1800 900 180

Local 83.7 ± 0.6 82.7 ± 1.0 83.0 ± 0.5 50.2 ± 0.3 45.7 ± 0.5 31.4 ± 0.7 60.7 ± 1.4 60.4 ± 1.3 60.2 ± 0.4
FedAvg [14] 32.4 ± 1.8 31.6 ± 0.7 32.0 ± 1.6 35.6 ± 0.1 34.9 ± 0.1 28.6 ± 0.3 47.7 ± 1.0 47.5 ± 0.3 45.7 ± 0.2

FedProto [19] 83.9 ± 0.3 76.1 ± 1.1 54.1 ± 0.0 47.4 ± 1.0 21.9 ± 0.4 11.5 ± 0.2 57.6 ± 0.5 46.7 ± 0.3 27.5 ± 0.2
Per-FedAvg [6] 54.7 ± 2.8 55.3 ± 0.4 63.4 ± 0.7 32.5 ± 0.1 28.3 ± 0.1 27.7 ± 0.1 46.7 ± 0.3 47.5 ± 0.1 45.9 ± 0.0
pFedGP [1] 84.2 ± 0.6 84.7 ± 0.4 84.8 ± 0.4 54.3 ± 0.3 52.2 ± 0.1 45.7 ± 0.4 63.2 ± 0.0 64.9 ± 0.5 67.7 ± 0.1
FedRep [4] 79.4 ± 1.2 76.5 ± 1.1 65.9 ± 1.6 59.8 ± 0.8 57.6 ± 0.3 34.7 ± 0.7 67.7 ± 0.0 66.8 ± 0.4 64.6 ± 0.6

MetaVers 86.7 ± 0.5 85.3 ± 0.3 84.7 ± 0.2 60.8 ± 1.0 57.9 ± 0.2 40.8 ± 0.5 70.1 ± 0.6 70.7 ± 0.3 68.4 ± 0.6

5.1. Proof of Lemma 1

Assumption 1 implies the following inequality.

Li(θ
(τ+1); Ei)− Li(θ

(τ); Ei) ≤

∇Li(θ
(τ);Ei) · (θ(τ+1) − θ(τ)) +

1

2
L∥θ(τ+1) − θ(τ)∥2.

(10)

By using the fact that

θ(τ+1) = θ(τ) − 1

n
η

n∑
j=1

∇Li(θ
(τ); Ei)

= θ(τ) − η∇L(θ(τ);E), (11)

the inequality (10) becomes

Li(θ
(τ+1); Ei)− Li(θ

(τ); Ei) ≤

∇Li(θ
(τ); Ei) · (−η∇L(θ(τ);E)) +

1

2
L∥−η∇L(θ(τ);E)∥2.

(12)

By following Assumption 4, we have

Li(θ
(τ+1); Ei)− Li(θ

(τ); Ei) (13)

≤ ∇Li(θ
(τ); Ei) · (−η∇L(θ(τ);E))

+
1

2
L∥−η∇L(θ(τ);E)∥2 (14)

= −ηα∥∇L(θ(τ);E)∥2 + 1

2
Lη2∥∇L(θ(τ);E)∥2 (15)

= (−ηα+
1

2
Lη2)∥∇L(θ(τ);E)∥2. (16)

Let us take the expectation over the given episodes E =
{Ej}nj=1, then we have

EE

[
Li(θ

(τ+1)
i ; Ei)

]
− EE

[
Li(θ

(τ); Ei)
]

(17)

(a)
= Li(θ

(τ+1))− Li(θ
(τ)) (18)

≤ (−ηα+
1

2
Lη2)EE

[
∥∇L(θ(τ);E)∥2

]
(19)

(b)

≤ (−ηα+
1

2
Lη2)

(
∥∇L(θ(τ))∥2

+ EE

[
∥∇L(θ(τ);E)−∇L(θ(τ))∥2

])
(20)

(c)

≤ (−ηα+
1

2
Lη2)

(
∥∇L(θ(τ))∥2 + σ2

)
. (21)

The equality (a) follows Definition 1. The inequality (b) is
base on Definition 1 and the fact that E[∥X∥2] ≤ ∥E[X]∥2+
E[∥X − E[X]∥2]. Also, the inequality (c) follows Assump-
tion 3.

5.2. Proof of Theorem 1

Based on Lemma 1, when the model is updated after
a single communication round, the loss at any local client
decreases. Then for any τ, t > 0,

Li(θ
(τ+t))− Li(θ

(τ))

=

t∑
j=1

(
Li(θ

(τ+j))− Li(θ
(τ+j−1))

)
(22)

(d)

≤
t∑

j=1

(
(−ηα+

1

2
Lη2)

(
∥∇L(θ(τ))∥2 + σ2

))
(23)

= (−ηα+
1

2
Lη2)

t∑
j=1

(
∥∇L(θ(τ))∥2 + σ2

)
. (24)

With a learning rate η∗ < 2α
L , then the loss function at any

local client is a decreasing function:

Li(θ
(τ+t))− Li(θ

(τ))

= (−η∗α+
1

2
Lη2)

t∑
j=1

(
∥∇L(θ(τ))∥2 + σ2

)
< 0. (25)

References
[1] Idan Achituve, Aviv Shamsian, Aviv Navon, Gal

Chechik, and Ethan Fetaya. Personalized federated
learning with gaussian processes. In Advances in Neu-
ral Information Processing Systems (NeurIPS), vol-
ume 34, pages 8392–8406, 2021. 1, 2, 6

[2] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aa-
ditya Kumar Singh, and Sunav Choudhary. Federated
learning with personalization layers. arXiv preprint
arXiv:1912.00818, 2019. 2

[3] Daoyuan Chen, Dawei Gao, Weirui Kuang, Yaliang Li,
and Bolin Ding. pfl-bench: A comprehensive bench-
mark for personalized federated learning. In Advances
in Neural Information Processing Systems (NeurIPS),
pages 9344–9360, 2022. 4, 6

[4] Liam Collins, Hamed Hassani, Aryan Mokhtari, and
Sanjay Shakkottai. Exploiting shared representations
for personalized federated learning. In International
Conference on Machine Learning (ICML), pages 2089–
2099. PMLR, 2021. 1, 2, 6

[5] Canh T. Dinh, Nguyen H. Tran, and Tuan Dung
Nguyen. Personalized federated learning with moreau
envelopes. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 33, pages 21394–
21405, 2020. 2, 6

[6] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar.
Personalized federated learning with theoretical guar-
antees: A model-agnostic meta-learning approach. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 3557–3568, 2020. 6

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine.
Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Ma-
chine Learning (ICML), pages 1126–1135. PMLR,
2017. 1, 2

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770–
778, 2016. 5

[9] Tian Li, Shengyuan Hu, Ahmad Beirami, and Vir-
ginia Smith. Ditto: Fair and robust federated learn-
ing through personalization. In International Confer-
ence on Machine Learning (ICML), volume 139, pages
6357–6368. PMLR, 2021. 6

[10] Xiaoxiao Li, Xiaofei Zhang, Michael Kamp, and Qi
Dou. Fedbn: Federated learning on non-iid features via
local batch normalization. In International Conference
on Learning Representations (ICLR), 2021. 6

[11] Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B.
Allen, Randy P. Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think
locally, act globally: Federated learning with lo-
cal and global representations. arXiv preprint
arXiv:2001.01523, 2020. 2

[12] Othmane Marfoq, Giovanni Neglia, Aurélien Bellet,
Laetitia Kameni, and Richard Vida. Federated multi-
task learning under a mixture of distributions. In
Advances in Neural Information Processing Systems
(NeurIPS), 2021. 6

[13] Othmane Marfoq, Giovanni Neglia, Laetita Kameni,
and Richard Vida. Personalized federated learning
through local memorization. In International Con-
ference on Machine Learning (ICML), pages 15070–
15092. PMLR, 2022. 1, 2

[14] Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR, 2017. 2, 6

[15] Jaehoon Oh, Sangmook Kim, and Se-Young Yun. Fed-
babu: Towards enhanced representation for rederated
image classification. In International Conference on
Learning Representations (ICLR), 2022. 2, 3

[16] Younghyun Park, Dong-Jun Han, Do-Yeon Kim amd
Jun Seo, and Jaekyun Moon. Few-round learning for

federated learning. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), volume 34, pages
28612–28622, 2021. 2, 3

[17] Sashank Reddi, Zachary Charles, Manzil Zaheer,
Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv
Kumar, and H Brendan McMahan. Adaptive federated
optimization. In International Conference on Learning
Representations (ICLR), 2020. 6

[18] Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal
Chechik. Personalized federated learning using hyper-
networks. In International Conference on Machine
Learning (ICML), pages 9489–9502. PMLR, 2021. 1,
2

[19] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou,
Qinghua Lu, Jing Jiang, and Chengqi Zhang. Fedproto:
Federated prototype learning over heterogeneous de-
vices. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence (AAAI), volume 36, pages 8432–8440,
2022. 1, 2, 5, 6

	. Implementation Details
	. Episode Construction
	. Hyperparameters for MetaVers
	. Interval Value W
	. Details for Standard PFL Benchmarks
	. Generalization on Novel Classes

	. Additional Ablation Study
	. Fixed Margin
	. Effect of the Way in the Few-Shot Episode
	. Fine-tuning in Testing
	. Discussions on Additional Communications Burden

	. Additional Experiments
	. Comparison with Centralized Meta-Learning

	. Evaluation on Other Benchmarks and Larger Architecture
	. Testing on PFL Benchmarks based on Dirichlet Allocation
	. Results for ResNet architecture

	. Convergence Analysis of MetaVers
	. Proof of Lemma 1
	. Proof of Theorem 1

