Appendices

A. Additional Ablation Study on Augmenta-
tions

In the present study, we introduce a technique of random
patch sampling designed to improve the training efficacy
of the NeRF+SR pipeline. In addition to this, we extend
the same framework to incorporate additional data augmen-
tations conventionally employed in Convolutional Neural
Networks (CNNs), such as random rotation or perspective
transformation applied to the sampled patches. Our central
hypothesis posits that these slight image transformations
could potentially generate novel patterns absent from the
training set but pertinent to the 3D spatial context. Through
these augmentations, the SR module is hypothesized to fur-
ther generalize, thereby facilitating the recovery of lost de-
tails in unobserved perspectives.

Mathematically, the NeRF+SR pipeline involves the
sampling of a patch in the low-resolution (LR) ray space
RI% and its high-resolution (HR) counterpart Rfj;. A trans-
formation 4 is subsequently applied to these patches, yield-
ing the transformed patches Rfy and R as defined in
Equation 5. These transformed patches are then integrated
into Equation 3 for training the pipeline.

RLlé = A(R[}), RII{Dllz = A(R{y))

To empirically validate our hypothesis, we implement
two lightweight augmentations, random rotation and ran-
dom horizontal flip, layered atop the random patch sam-
pling technique. For synthetic datasets, the maximum ro-
tation angle is set to 10 degrees, and the probability for a
horizontal flip is set at 10%. Conversely, for the real-world
scenes dataset LLFF, the maximum rotation angle is limited
to 5 degrees, and the random horizontal flip is omitted since
it’s inappropriate with the forward-facing scenes.

The empirical results, presented in Table 5, reveal
a marginal degradation in the output PSNR when us-
ing transformation-based augmentations as compared to
utilizing random patch sampling exclusively. Conse-
quently, random patch sampling remains as the most ef-
fective lightweight augmentation strategy for enhancing the
NeRF+SR pipeline. We earmark the exploration of the ef-
fective utilization of transformation-based augmentations
within the NeRF+SR pipeline for future research endeav-
ors.

B. Additional Qualitative Results

We show additional qualitative results in Figure 4. Here
we compare using different SR methods and different train-
ing procedures on the SR module. For the SR methods, we
compare using bilinear interpolation and EDSR [27]. For

Dataset Data Aug 2x 4x 8x

Grid-Patch 31.84 29.28 26.02
Rand-Patch 32.53 3047 27.27
RP+RRot+Hflip 3222 30.26 27.26
Grid-Patch 3434 3045 26.26
Rand-Patch 3539 32.04 27.93
RP+RRot+Hflip 35.03 31.78 27.79
Grid-Patch 262 2494 21.68
LLFF Rand-Patch 26.04 2541 21.3
RP+RRot 2594 2537 21.29

NeRF-Synthetic

NSVF-Synthetic

Table 5. PSNR of using different augmentation techniques for SR
rate 2x, 4x and 8x. The output resolution is 800x800 for NeRF-
Synthetic and NSVF-Synthetic, and 1008x756 for LLFF. Grid-
Patch stands for grid-based patch sampling and Rand-Patch stands
for random patch sampling. RRot stands for random rotation and
Hflip stands for random horizontal flip. The best results in each
SR rate and dataset are highlighted in bold.

different training procedures, we compare taking the pre-
trained EDSR from [4], finetuning the EDSR model with
grid-based patch sampling and finetuning the EDSR model
with random patch sampling

As discerned from Figure 4, reliance on bilinear inter-
polation culminates in outputs characterized by a lack of
sharpness, rendering them blurry. In contrast, utilization
of a pretrained SR module yields images of greater clarity,
albeit with some loss of intricate details. Subsequent fine-
tuning facilitates the recovery of nuanced patterns, such as
shadows. Remarkably, the deployment of our proposed ran-
dom patch sampling methodology further enhances perfor-
mance, as evidenced by improvements in the Peak Signal-
to-Noise Ratio (PSNR) when compared to traditional grid-
based patch sampling.

C. Additional Comparison with more NeRF
models.

Beyond the data presented in Table 1, we extend our
comparative analysis to encompass additional NeRF mod-
els specifically optimized for efficiency, incorporating both
super-resolution (SR) based and non-SR-based approaches,
as enumerated in Table 6. The empirical results delineated
in Table 6 affirm that our proposed pipeline not only main-
tains high-quality output but also excels in terms of effi-
ciency. This efficiency is observed across multiple metrics
including training duration, rendering velocity, and model
compactness, all achieved without necessitating specialized
CUDA support on GPUs.

Ground
Truth

TensoRF

PSNR: 33.14

TF+Bilinear

PSNR: 29.77

TF+PT-SR

PSNR:30.4

TF+FT-SR
GridPatch

PSNR: 31.84

TF+FT-SR
RandPatch
(Ours)
PSNR: 32.53

e / ; z
gy
%) t Tt

Figure 4. Qualitative results on lego, chair and mic scenes in NeRF-Synthetic. We show comparison on TensoRF at HR, and using bilinear,
pretrained SR, finetuned SR with grid-based patch sampling and finetuned SR with random patch sampling to upsample output from
TensoRF. The SR rate is 2 x, and the SR module is EDSR [27]. We show the average PSNR on NeRF-Synthetic dataset of each method.

Train Render Model

Method PSNRt SSIM{ LPIPS| Time Time(s) Size(MB)
NeRF [31] 31.01 0.947 0.081 ~35h 20 5
MipNeRF [8] 33.09 0.961 0.043 ~35h - -
NSVF! [29] 31.74 0.953 0.047 >48h 3 -
KiloNeRF' [34] 31.00 0.950 0.030 >35h 0.026 -
SNeRG [21] 30.38 0.950 0.05 ~35h 0.012 86.8

MobileNeRF! [13] 30.90 0.947 0.062 >35h 0.0013 125.8
Efficient-NeRF [22] 31.68 0.954 0.028 6h 0.004 ~3000

TensoRF [17] 33.14 0.963 0.049 18m 1.4 71.8
DVGO [37] 31.95 0.958 0.053 14m 0.44 612
FastNeRF [18] 2090 0.937 0.056 - 0.041 >7000
Plenoxel! [17] 31.71 0.958 0.049 1lm 0.066 815

Instant-NGP? [32] 33.18 - - 5m 0.016 16
MobileR2L [10] 3134 0.993 0.051 >35h - 8.3
NeRF-SR [38] 28.46 0.921 0.076 >35h 5.6 -

FastSR-NeRF (2x) 3253 0.961 0.052 1.5h 0.309 20

(a) NeRF Synthetic Dataset results.

Train Render Model

Method PSNR1 SSIM{ LPIPS| Time Time(s) Size(MB)
NeRF [31] 30.81 0.952 - ~35h ~20 ~5
NSVF! [29] 35.13 0.979 - >48h ~3 -
DVGO [37] 35.18 0.979 - ~20m - ~600
TensoRF [12] 36.52 0.959 0.027 15m 14 74
FastSR-NeRF (2x) 3539 0.979 0.032 1.5h 0.302 26

(b) NSVF Synthetic Dataset results.

Train Render Model

Method PSNRT SSIMT LPIPS| oo b fots) Size(MB)
NeRF [31] 265 0811 0250 ~48h 33 5
SNeRG [21] 2563 0818 0.183 ~48h 0.036 310
NeX [42] 2726 0904 0.178 20h 0.0033 -

Efficient-NeRF[22] 27.39 0912 0.082 4h 0.005 4300
TensoRF [17] 266 0832 0207 28m 5.9 188

MobileR2L [10] 2615 0966 0.187 >48h - 8.3
NeRF-SR [3¢] 2726 0842 0.103 >48h 39.1 -

RefSR-NeRF [23] 2623 0.874 0.243 - 8.5 38

FastSR-NeRF (2x) 2620 0.822 0241 25h 0.786 26

(c) LLFF Dataset results.

Table 6. Quality and efficiency results on NeRF-Synthetic, NSVF-Synthetic, and LLFF datasets. The tables are organized into three
sections: implicit MLP-based NeRFs, efficient fully-explicit or hybrid NeRFs, and SR-based NeRFs, including our approach. Top perfor-
mance in each quantitative metric is marked in bold, and the second best is underlined. Clear efficiency disadvantages are highlighted in
red. Our tests run on a NVIDIA V100 GPU, while other results are their GPU results cited from respective papers when available. I notes
such method requires 8 high-end GPUs to train. { notes the method relies on customized CUDA kernels. Our method produces excellent
quantitative results that is on par or only slightly less than the state-of-the-art cross all the benchmarks. Our method further achieves
great efficiency results across training time, rendering speed and model size without the need of customized CUDA kernels support,
which is favorable for inexpensive consumer-grade devices.

