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Figure 1. Illustration of our virtual cameras in a top-down view.
In order to set up a virtual camera at a proper position, we follow
the camera settings of Human3.6M to set up 4 virtual cameras
(indicated in black color). In addition, we perform interpolation to
obtain extra virtual camera positions (indicated in green color).

A. Model Capacity Comparison
Table 1 shows the model capacity comparison between

our approach and METRO [4]. It shows that the 2D pose
estimation backbone in our framework is approximately 4.5
times smaller than the backbone used in METRO. Despite
this smaller model size, our method outperforms METRO
in terms of reconstruction error.

B. Details of Virtual Cameras
During pre-training, we use virtual cameras to help syn-

thesize heatmaps. In order to set up the virtual cameras
at proper positions, we follow the camera settings of Hu-
man3.6M [2] in our experiments. To be specific, we set up
4 virtual cameras using the camera parameters from Subject

Method Backbone # Bkbone Param # Trans Param MPJPE ↓ PA-MPJPE ↓

METRO img feat bkbone 128M 102M 54.0 36.7
Ours 2D pose net 28M 102M 45.3 31.7

Table 1. Comparison of computational cost.

Number of Views MPJPE ↓ PA-MPJPE ↓

1 92.5 61.7
2 89.5 61.4
4 89.0 58.4
8 88.3 58.2

Table 2. Adding more virtual camera views. We evaluate the pre-
trained model on Human3.6M validation set without fine-tuning.

1 of Human3.6M training set.

C. Adding More Virtual Cameras

We further investigate whether adding more camera
views can improve the performance. Given the 4 virtual
cameras defined by Human3.6M, we perform interpolation
to obtain additional 4 virtual camera views. Figure 1 illus-
trates our virtual cameras using an example. The 4 virtual
cameras defined by Human3.6M are denoted in black color.
The interpolated virtual cameras are denoted in green color.

In Table 2, we observe that adding more camera views in
pre-training improves the performance for both metrics on
Human3.6M. Note that we evaluate the pre-trained model
without fine-tuning.

D. Visualization of Pose Feature Maps

In Figure 2, we present additional visualization of the
pose feature maps. By fine-tuning our pre-trained MPT
model, we empirically observed that our model learns to
extract pose feature maps where each map captures infor-
mation on multiple body joints, and our model generates a
human mesh with more reasonable pose and shape.
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Figure 2. Visualization of pose feature maps. Our model learns to extract pose feature maps where each map captures information on
multiple body joints, leading to improved reconstruction.

E. Resolution of Pose Feature Maps

As we use HigherHRNet [1] to generate pose feature
maps, one may wonder what resolution is needed. Table 3
shows the performance comparison with different resolu-
tions. The results suggest that using larger resolution (i.e.,
224 × 224) can slightly improve the results. We note that
HigherHRNet was pre-trained using the non-cropped im-
ages [1], but we use 224 × 224 cropped images instead.

Resolution MPJPE ↓ PA-MPJPE ↓

112× 112 46.5 32.7
224× 224 45.3 31.7

Table 3. Different resolutions of the pose feature maps. We con-
duct fine-tuning on a mixture of 2D and 3D training sets, and eval-
uate the performance on Human3.6M validation set.



Input features MPJPE ↓ PA-MPJPE ↓

Binary Human seg. mask 55.6 35.4
2D pose heatmaps (Ours) 45.3 31.7

Table 4. Pre-training with different input features.

We think that increasing the input resolution to the original
resolution on which HighHRNet was trained could further
enhance model performance.

F. Additional Implementation Details
We implement our models based on PyTorch [7] and

Graphormer codebase [4, 5]. We additionally adopt Deep-
Speed [8] which empirically leads to faster and more sta-
ble training. We use 16 NVIDIA V100 GPUs for most of
our training experiments. We use the Adam optimizer for
training. We set the initial learning rate as 2 × 10−4, and
then use learning rate warmup over the first 10% training
steps followed by linear decay to 0. We perform mesh pre-
training on the 2 million meshes (sparsely sampled from
AMASS dataset [6]) for 10 epochs. When fine-tuning on
mixed datasets, we empirically fine-tune for 80 epochs.

We use the same transformer architecture as in the liter-
ature [4,5]. Specifically, our transformer model has 3 trans-
former blocks. Each block has 4 transformer layers and 4
attention heads. For the 3 transformer blocks, the hidden
sizes are 1024, 256, 64, respectively. To reduce the compu-
tational cost, the transformer model outputs a coarse mesh.
We then use MLPs to upsample the predicted mesh to the
original resolution, similar to [4, 5]. For simplicity, we do
not add graph convolutions to the transformer layers.

Regarding the details of 2D pose estimation model, we
use HigherHRNet [1] based on HRNet-w48 architecture.
In our ablation study, we replace HigherHRNet with Sim-
pleBaseline [9], which is based on ResNet101 architec-
ture. Both models are initialized with COCO Keypoint pre-
trained weights.

Following the literature [3,5], we use a weak perspective
camera model for calculating 2D re-projection loss. Our
model predicts camera parameters, including a scaling fac-
tor s and a 2D translation vector t. Our method does not
leverage ground truth camera parameters. The camera pa-
rameters are learned by optimizing 2D re-projection.

G. Discussion on Segmentation and 2D Pose
Backbones

We empirically found that a semantic segmentation
backbone is not suitable for our framework. There are sev-
eral reasons: First, acquiring segmentation feature maps
during pre-training is challenging as we do not have RGB
images available in pre-training. While one might consider
using a rendering engine to generate photo-realistic human

images for feature extraction, such rendering process is a
lot more expensive than heatmap synthesis and existing ren-
dering engines may not completely bridge the domain gap.
Secondly, although we can synthesize a binary human seg-
mentation mask by re-projecting the 3D mesh onto the 2D
image plane, this binary mask does not accurately represent
human pose in cases of (self-)occlusion. Table 4 shows a
comparison between using 2D pose heatmaps and binary
human masks. It shows that 2D pose heatmaps yield better
results in our framework.

H. Limitations and Societal Impact
3D pose estimation models can be potentially applied

to human activity analysis applications, such as detecting
whether the senior subjects are falling. However, there
is a risk associated with directly applying the models for
mission-critical decision making, especially in the health
care field. Real-world applications may require an auxiliary
supervision model or task-specific fine-tuning.

Our models have a dependency on existing MoCap train-
ing data. Some of the public released MoCap data may be
licensed, meaning they can only be used for scientific re-
search purposes. Users must strictly adhere to the data us-
age agreement to utilize MoCap datasets for their intended
purposes.
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