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The paper “Boundary Privileged Knowledge Distillation
For Semantic Segmentation” introduces a novel method,
BPKD, that decouples knowledge distillation into edge and
body components, a first in the field. This decoupling en-
ables the student model to focus on spatially sensitive fea-
tures for edge prediction and semantically rich features for
body segmentation. The method achieves state-of-the-art
performance across multiple network architectures on three
benchmark datasets, including a 13% Trimap improvement
over existing methods. While it incurs a slightly higher
training cost, the method is efficient for real-time applica-
tions post-training. The work has been implemented using
the MMseg framework, promising full code and training log
release for public scrutiny. The paper proposes a novel ap-
proach to solving “conceptual knowledge leaking” in stu-
dent networks.

In the supplementary materials, we augment the core ar-
guments of our main paper with additional analyses, ex-
panded experimental details, and enhanced visualizations.
Initially, we conduct a performance comparison using re-
duced schedules across three unique datasets, specifically
chosen for ablation studies. These comparative results are
encapsulated in Table 2. To facilitate reproducibility, we
provide an in-depth guide to our implementation, along
with PyTorch-compatible code for our specialized Edge
Loss. Additional analytical insights into class-trimap IoU
are available in Figure | and Table 3. Lastly, due to space
constraints in the main manuscript, we include both vi-
sual and quantitative experiments on three distinct datasets
within this supplementary section.

1. Performance On Reduced Schedules

In order to demonstrate the efficacy of leveraging soft-labels
from teachers to accelerate convergence speed, we con-
ducted a comparison experiment with reduced schedules,
40k iteration training, and a 512 x 512 resolution. The re-
sults of this experiment, as well as comparisons with other
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Table 1. Performance Comparison with state-of-the-art distilla-
tion methods on ADE20K dataset, the student backbone is not
pre-trained on ImageNet.

Methods | mloU | mAcc(%)
T:PSPNet-R101 [11] | 44.39 54.74
S:PSPnet-R18 [11] 17.11 22.99
SKDS [5] 20.79 27.74
IFVD [3] 20.75 27.6
CIRKD [10] 22.90 30.68
CWD [7] 24.79 31.44
BPKD(Ours) 27.46 36.10

state-of-the-art algorithms, are reported in Table 2. To en-
sure a fair comparison, our proposed knowledge distillation
framework was applied to different teachers. Our students
were able to learn knowledge from the teacher network, re-
sulting in significant performance gains and achieving state-
of-the-art results on multiple datasets. As demonstrated
in Table 2, on ADE20K our method outperformed strong
baseline channel-wise distillation by 2.34%, 1.46%, 1.66%,
1.57%, and 1.59%, respectively. Furthermore, our meth-
ods were able to enhance the lightweight student network
without increasing computational capacity, improving per-
formance by 6.45%, 4.13%, 6.08%, and 8.49% compared
to raw students. On Cityscape our method outperformed
strong baseline channel-wise distillation by 2.22%, 1.35%,
4.40%, 1.52%, respectively. Furthermore, our methods
were able to enhance the lightweight student network with-
out increasing computational capacity, improving perfor-
mance by 10.07%, 3.78%, 8.64%, and 1.75% compared to
raw students. On Pascal Context our method outperformed
strong baseline channel-wise distillation by 2.34%, 1.46%,
1.66%, 1.57%, and 1.59%, respectively. Furthermore, our
methods were able to enhance the lightweight student net-
work without increasing computational capacity, improving
performance by 10.07%, 3.78%, 6.08%, and 8.49% com-
pared to raw students. These numerical results suggest that



Table 2. Performance comparison of different distillation methods with state-of-the-art techniques in Reduced schedules. We set a
reduced training setting to reducethe computational cost, including crop size reduced to 512 x 512, and training schedule to 40k iterations.
We test these methods on various segmentation networks for both student and teacher models, using datasets including Cityscapes [1],

ADE20K [
in large margins across multiple datasets and network architectures.

], and Pascal Context [2]. The FLOPs are obtained on 512 x 512 resolutions. Our BPKD outperforms all previous methods

Methods FLOPs(G) | Parameters(M) ADE20K Cityscapes Pascal Context 59
40k 512*512 40k 512*512 40k 512*512
mloU(%) mAcc(%) | mloU mAcc(%) | mloU mAcc(%)

T: PSPNet-R101 256.89 68.07 44.39 54.75 79.74 86.56 52.47 63.15
S:PSPnet-R18 54.53 12.82 29.42 38.48 68.99 75.19 43.07 53.79
SKDS 54.53 12.82 31.80 42.25 69.33 75.37 43.93 54.01
IFVD 54.53 12.82 32.15 42.53 71.08 77.46 44.75 54.99
CIRKD 54.53 12.82 32.25 43.02 72.23 78.79 44.83 55.3
CWD 54.53 12.82 33.53 41.71 74.29 80.95 45.92 55.50
BPKD(Ours) 54.53 12.82 35.87 4542 75.94 82.62 47.16 57.61
T: HRNetV2P-W48 95.64 65.95 42.02 53.52 80.65 87.39 51.12 61.39
S:HRNetV2P-W18S 10.49 3.97 28.69 37.86 73.77 82.89 40.82 51.70
SKDS 10.49 3.97 30.49 40.19 74.75 83.23 42.91 53.63
IFVD 10.49 3.97 30.57 40.42 75.33 83.83 43.12 54.03
CIRKD 10.49 3.97 31.34 41.45 74.63 83.72 43.45 54.10
CWD 10.49 3.97 31.36 40.24 75.54 84.08 45.50 56.01
BPKD(Ours) 10.49 3.97 32.82 43.49 76.56 85.34 46.12 57.63
T:DeeplabV3P-R101 255.67 62.68 45.47 56.41 80.98 88.7 53.2 64.04
S:DeeplabV3P+MV2 69.6 15.35 22.38 31.71 70.49 80.11 37.16 49.1
SKDS 69.6 15.35 24.65 35.07 70.81 79.31 39.18 51.13
IFVD 69.6 15.35 24.53 35.13 71.82 80.88 38.8 50.79
CIRKD 69.6 15.35 25.21 36.17 72.39 81.84 39.99 52.66
CWD 69.6 15.35 26.89 35.79 73.35 82.41 42.52 53.24
BPKD(Ours) 69.6 15.35 28.46 41.45 76.58 84.14 44.32 56.04
T:ISANet-R101 228.21 56.8 43.8 54.39 80.61 88.29 52.94 63.52
S: ISANet-R18 54.33 12.46 27.68 36.92 71.45 78.65 41.08 50.62
SKDS 54.33 12.46 28.70 38.51 70.65 77.53 42.87 52.89
IFVD 54.33 12.46 29.66 38.80 70.30 77.79 43.19 53.46
CIRKD 54.33 12.46 29.79 40.48 72.00 79.32 43.49 53.89
CWD 54.33 12.46 34.58 43.04 71.61 80.02 44.63 55.01
BPKD(Ours) 54.33 12.46 36.17 45.26 72.72 81.50 45.50 56.55

our method is not dependent on a specific model struc-
ture, and that it produces significant performance gains with
the pure student network, even without ImageNet Pre-train
shows in table 1. To further demonstrate the effectiveness of
our method, qualitative segmentation results are visualized
in Figure 5.

2. Implementation Details of Edge Loss

This section presents the implementation details of the Edge
Loss in PyTorch, aimed at facilitating reproducibility. Our
implementation consists of well-annotated components that
are incorporated into our distillation system. To begin with,
the Pre Mask Filter operation is applied to the logits ob-
tained from both teachers and students. Subsequently, a di-

mensional rearrangement is performed to optimize the pro-
cess. The KL divergence serves as the core component to
estimate the distance between the student and teacher prob-
ability distributions, which establishes an embryonic refer-
ence for calculating the loss. The Post Mask Filter takes
input from the unreduced criterion and aggregates the dis-
tance on the channel dimension. It is followed by an addi-
tional spatial expansion that repeats the spatial information
based on the given channels. Finally, the inner weights vec-
tor is applied to corresponding categories to enhance the
learning capacity for hard edge samples. The EDM loss
terms are then finalized by overall weights adaption and
average reduction. Furthermore, the Edge Detection Mod-
ule is another crucial sub-component that employs multiple-
level edge masks by providing input and ground truth labels.
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Figure 1. Illustration of our proposed Boundary Privilege Knowledge Distillation schemes in terms of class Trimap IoU metrics with
PSPnet + Resnet18 network architecture over the Cityscapes validation set. It can be seen from the figure that our method has different
degrees of improvement for all categories, meanwhile , we have a significant improvement for categories that are difficult to distinguish by
boundaries.

Class ‘ road sidewalk building wall fence pole light  sign vege. terrain
Baseline 80.88  62.44 68.72 2482 3591 59.73 5839 6358 69.64 42.58
CWD 81.84 6536 70.14  29.22 3798 60.72 6043 6512 7091 45.28
BPKD(Ours) | 86.29  70.73 7645  35.13 42.12 6396 6625 71.09 77.65 49.87

Class sky person rider car  truck  bus train moto. bicycle average
Baseline 7772 6594 48.45 7455 33.63 50.58 3458 39.83 59.56 55.34
CWD 79.2 67.58 49.11 75776 36.53 5137 3829 4382 60.75 57.34
BPKD(Ours) | 84.87  73.56 544 8228 4449 5727 4127 50.14 6737 62.91

Table 3. Illustration of our proposed Boundary Privilege Knowledge Distillation schemes in terms of class Trimap IoU metrics with

PSPnet + Resnet18 network architecture over the Cityscapes validation set.

We utilize dilation and erosion to retrieve the edges, with the
hyperparameter, kernel_size, controlling the edge width.
To address the computational pressure arising from a large
kernel, the compute_iters is introduced for GPU mem-
ory optimization. Additionally, the edge detection module
employs average pooling as a downsampling policy, con-
sidering progressively decreasing importance from internal
boundaries to outlines.

3. Categorical trimap Performance

This section presents an evaluation of the categorical
Edge IoU using the PSPnet encoder and Resnetl8 back-
bone architecture on the Cityscape validation set. Figure
1 and Table 3 illustrate the results. Our proposed meth-
ods demonstrated significant improvement in most classes
based on edge factors compared to the raw student model
and strong baseline channel-wise distillation method. We
also observed explicit improvement for categories that are
difficult to distinguish by boundaries. For instance, we
achieved a 10.31% improvement for the wall category and
a 6.69% improvement for the bus category.

4. Instance segmentation

We conducted experiments using SOLOvV2 on the COCO
dataset to demonstrate the general adaptability of our
method.  Specifically, we selected SOLOV2 [8] X-
101(DCN) as the teacher and Light SOLOV2 [8] R-18 as
the student. Table 4 presents the results, which show that
our method improved the raw student by 6.5%, 9.5%, 7.5%,
6.9%, 8.8%, and 4.8% on the corresponding metrics. The
results demonstrate that our distillation method can easily
adapt to instance segmentation tasks and outperforms pre-
vious methods in the small-scale training setting. While in-
stance segmentation and semantic segmentation tasks have
distinct differences, they share similar properties in that
they predict masks for target senses and given pixel-level
annotations. During the experiments, we applied knowl-
edge distillation methods multiple times on pyramid classi-
fication logits and masked representations, followed by cal-
culating the average across all levels of sub-terms to obtain
the distillation loss. From the numerical results, AP metrics
explicitly increased for small and medium objects. How-
ever, there was no performance improvement for large ob-



jects, indicating that our method has room for improvement
in instance segmentation tasks. As a future prospect, we
aim to adjust the current method and design a specialized
loss term for instance-level knowledge distillation.

Methods ‘ AP AP5() AP75 APS APM APL
T:SOLOv2-X101 | 41.7 632 451 18.0 450 61.6
S:SOLOV2-R18* | 26.7 441 275 650 272 458
CWD 284 47.1 29.6 990 303 442
BPKD(Ours) 332 536 350 134 360 50.6

Table 4. The instance segmentation results presented in this report
were obtained on the COCO [4] validation set using single-model
results. All distillation methods and the student network baseline
were trained using a 1x schedule with multiple-scale training dis-
abled. The table below demonstrates that our distillation method
can easily adapt to instance segmentation tasks and outperforms
previous methods in a small-scale training setting.
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Figure 2. BPKD (left) decouples the edge and body information
from the input image and creates two parallel distillation pipelines
compared to pioneering works, such as CWD [7], SKDS [5], IFVD
[9], CIRKD [10]. The proposed compositional loss forces the stu-
dent to learn each part separately. The result shows the explicit
performance gain.
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(a) Image (b) W/o distillation (d) BPKD(Ours) (e) Teacher

Figure 3. Qualitative results on the ADE20K [12] validation set produced by PSPNet [11] and ResNet18 network architecture: (a) Initial
images, (b) w/o distillation scheme, (c) sate-of-the-art method channel-wise distillation [7], (d) BPKD our method, (e) teacher. This figure
shows that our methods segment the small complex objects with explicit boundaries. Zoom in for a better view. In the second row, BPKD
demonstrates superior segmentation results; for instance, the contour of the chair is more distinct and the overall accuracy is enhanced. In
the third, fourth, and last rows, the contours of the pillows are clearly delineated, coming closer to the results generated by the Teacher.
In the seventh row, the coffee table situated between the two chairs is rendered with greater clarity, thereby suggesting that our method
achieves commendable performance in resolving the ambiguity among multiple proximate objects. These visual outcomes indicate that
our approach not only improves semantic boundaries but also leverages prior knowledge of contours and shapes to produce outstanding
segmentation results.



(a) Image (b) W/o distillation (c) CWD (d) BPKD(Ours) (e) Ground truth

Figure 4. Qualitative results on the Cityscapes [1] validation set produced by PSPNet [11] and ResNet18 network architecture: (a) Initial
images, (b) w/o distillation, (c) sate-of-the-art method channel-wise distillation [7], (d) BPKD our method, (e) Ground truth. This figure
shows that our methods segment the small complex objects with explicit boundaries. Zoom in for a better view. In the first row, BPKD
effectively addresses the issue of the front windshield of the bus being wrongly segmented into multiple classes. In the second row, the
approach enhances the contours of the upper and lower sections of the road signs. The third row presents a particularly striking result in the
segmentation of a train; through differentiated supervision and distillation of the edges and main body, the train is clearly segregated from
obstructions. In the fourth row, distant pedestrians present a challenging case for segmentation and identification due to their far-off camera
angle and significant occlusions; despite these complexities, BPKD still manages to produce stable edges around the human figures. In
the remaining images, BPKD consistently shows improvements, achieving commendable segmentation outcomes on both pedestrian paths
and roadways.



(a) Image (b) W/o distillation (c) CWD (e) Teacher

Figure 5. Qualitative results on the Pascal-Context [6] validation set produced by PSPNet [11] and ResNet18 network architecture: (a)
Initial images, (b) w/o distillation scheme, (c) sate-of-the-art method channel-wise distillation [7] , (d) BPKD our method, (e) teacher.
This figure shows that our methods segment the small complex objects with explicit boundaries. Zoom in for a better view. In the first
row, BPKD exhibits more fine-grained edge segmentation compared to the non-distilled student network. In the second row, neither the
student network nor CWD manages to achieve effective segmentation of the cup, owing to complex angles and environmental factors. Our
approach, however, accomplishes accurate segmentation by leveraging prior knowledge of the cup’s boundary and supervised learning on
the main body of the cup. In the remaining examples, BPKD demonstrates more intricate and advanced segmentation results, thereby
revealing that under the influence of edge loss, the entire network’s convergence space benefits from shape and spatial priors across
different classes. This, in turn, implicitly grants better main-body supervision and assistance, ultimately achieving state-of-the-art (SOTA)
distillation results in segmentation.
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