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1. Implementation Details
We include all implementation details in this section.

1.1. Adapt Image-language Model Feature

We use the publicly available pretrained CLIP [5] model
ViT-B/32 as the open-vocabulary classification model, with
an input size of 224×224.

Based on the detection setting we use for training and
evaluating our detector, we adapt the CLIP to two detec-
tion domains: COCO [4] detection domain, LVIS detection
domain [2]. We finetune the layer normalization layers in
the CLIP with base category instances in COCO or LVIS
based on the detection setting we use and maintain all other
parameters fixed. All base category instances are cropped
by 1.2x enlarged GT bboxes. We conduct the zero padding
to convert each cropped region to the square and apply the
default preprocessing pipeline of the CLIP.

We use CLIP to predict the category of each cropped re-
gion and calculate the cross-entropy loss with the GT la-
bel of each region. We finetune the model by optimizing
the Cross-Entropy Loss. We use AdamW optimizer with a
learning rate of 0.0001, batch size 4 and clip the L2 norm of
the gradients when larger than 0.1. We finetune the model
for 12 epochs.

1.2. Generate CLIP Proposals

When generating the CLIP Proposals, we still use the
CLIP model we mentioned in section 1.1 as a classifier to
select the distillation regions. If we will use the adapted
CLIP’s feature to train the detector, we will use the adapted
CLIP to generate the CLIP Proposals. Otherwise, we use
the unadapted CLIP to generate CLIP Proposals.

We generate the CLIP proposals on all the training im-
ages of the detection dataset base on the detection setting
we use. We first resize the image with the image ratio main-
tained. The long edge of the image will be resized into 1333
as width or 800 as height.
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We generate the anchors on each image with a stride of
32 pixels and with 5 different sizes (32, 64, 128, 256, 512),
and 3 different ratios (1:1, 2:1, 1:2). We select the top 1000
anchors after NMS as CLIP Proposals on each image. We
filter out the anchors which have high IoU with the base
category GT bboxes to reduce the redundancy since we will
add 1.2x enlarged base category GT bbox as part of the
CLIP Proposals. In model training, we randomly select a
fixed subset with 200 CLIP Proposals on each image for
training.

1.3. Detection Setting

In COCO detection setting, the dataset is divided into
48 base categories and 17 novel categories. 15 categories
without a synset in the WordNet hierarchy are removed.

We filter out the training images which do not have base
category annotation. Following the setting in [8], we filter
out the images that have neither the base category instances
nor the novel category instances in the validation set. The
training set contains 107761 images and 665387 base cat-
egory instances. The validation set contains 4836 images
and 28538 base category instances and 33152 novel cate-
gory instances. We evaluate the model in a generalized set-
ting, which evaluates the base and novel categories at the
same time. AP50 is used as the evaluation metric.

In LVIS detection setting, the dataset is divided into 866
base categories (containing 405 frequent categories and 461
common categories) and 337 novel categories (337 rare
categories). Our LVIS-Fbase split uses the frequent cate-
gories as the base(405 categories), common and rare cat-
egories as the novel(common has 461 categories, rare has
405 categories). The training set contains 98531 images and
1200258 base category instances. The validation set con-
tains 19442 images and 230427 base category instances and
14280 novel category instances. We aggregate the model
performance in frequent, common, and rare categories sep-
arately. AP is used as the evaluation metric.
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2. Experiments in Few-shot Detection Settings
In few-shot object detection, the model is trained on the

base category’s annotations and evaluated on novel cate-
gories. The only difference is that in few-shot detection,
each novel category has the same number of annotated ob-
jects(i.e, K-shot), which can be used to improve the model
performance on the novel before the model is evaluated.
We directly evaluate our model in the few-shot benchmark,
without using this K-shot additional information.

Datasets and Evaluation Metrics. We evaluate our ap-
proach on PASCAL VOC 2007+2012 and COCO. For the
few-shot PASCAL VOC dataset, we combine the trainval
set of 2007 with the one of 2012 as training data. PASCAL
VOC 2007 test set is used for evaluation. The 20 classes
are divided into 15 base classes and 5 novel classes. We
evaluate our model in three different base/novel splits used
in [7]. Split 1 has 14631 training images with 41084 base
category instances, and the validation set has 4952 images,
10552 base category instances, and 1480 novel instances.
Split 2 has 14779 training images with 40397 base category
instances, and the validation set has 4952 images, 10447
base category instances, and 1585 novel instances. Split
3 has 14318 training images with 40511 base category in-
stances, and the validation set has 4952 images, 10605 base
category instances, and 1427 novel instances.

For the few-shot COCO dataset, we use the COCO
train2017 as training data and evaluate our model on the
COCO val2017. The 20 categories that exist in PASCAL
VOC are used as the novel categories, while the rest of the
60 categories are used as the base categories. The training
set has 98459 images and 367189 base category instances.
The validation set has 5000 images and 15831 base category
instances and 36781 novel category instances.

AP50 is used as the evaluation metric in PASCAL VOC,
while AP and AP50 are used in COCO.

Model. Following previous work in few-shot detection,
we train a Faster R-CNN [6] model with ResNet-101 FPN
backbone. The backbone is pretrained on ImageNet. We
use SGD as the optimizer with batch size 4, learning rate
0.005, momentum 0.9, and weight decay 0.0001. We also
adopt linear warmup for the first 500 iterations, with a warm
up ratio is 0.001. We apply multi-scale train-time augmen-
tation. For the PASCAL VOC dataset, we train the model
for 21 epochs and divide the learning rate by 10 at epoch 15
and epoch 18. For the COCO dataset, we train the model
for 18 epochs and divide the learning rate by 10 at epoch 14
and epoch 16.

Baselines. We compare EZAD’s performance with two
few-shot detection models, TFA [7] and Meta Faster R-
CNN [3] as the baselines. The TFA model with linear layer
as the classifier is noted as TFA w/fc, while the model with
cosine classifier is noted as TFA w/cos.

Results. Table 1 shows the results on the PASCAL

Method Shot Novel AP50
Split1 Split2 Split 3 Avg

TFA w/fc 1 36.8 18.2 27.7 27.6
TFA w/fc 2 29.1 29.0 33.6 30.6
TFA w/fc 3 43.6 33.4 42.5 39.8

TFA w/cos 1 39.8 23.5 30.8 31.4
TFA w/cos 2 36.1 26.9 34.8 32.6
TFA w/cos 3 44.7 34.1 42.8 40.5
MF R-CNN 1 43.0 27.7 40.6 37.1

Ours 0 44.6 30.7 47.5 40.9
Split1 Base(AP50): TFA (3-Shot)=79.1, Ours=80.8

Table 1. Evaluation results on the novel categories of PASCAL
VOC few-shot benchmark. MF R-CNN means Meta Faster R-
CNN. Our model zero-shot performance on the novel match the
TFA’s performance in its 3-shot setting. Our model also has a
better performance on base.

Method Shot AP AP50
TFA w/fc 10 10.0 19.2

TFA w/cos 10 10.0 19.1
MF R-CNN 2 7.6 16.3

Ours 0 11.0 23.5

Table 2. Evaluation results on novel categories of COCO few-shot
benchmark. MF R-CNN means Meta Faster R-CNN. Our model
zero-shot performance on the novel match the TFA’s performance
in its 10-shot setting.

dataset. EZAD achieves 40.9% in novel AP50 averaged
over three different splits. EZAD’s performance matches
the TFA 3-shot performance in split1 and split2 and is 4.7%
higher than TFA in split3. Compared with the TFA’s per-
formance on base, EZAD is 1.8% higher. For Meta Faster
R-CNN, it generates proposals for each category on each
image, which needs multiple forward passes. Its inference
time will be much slower if the dataset has a large number of
novel categories. Compared with the Meta Faster R-CNN,
EZAD outperforms it without using any additional annota-
tions by a 1.6%, 3%, and 6.9% in three different splits, re-
spectively. Table 2 shows the results on the COCO dataset.
EZAD achieves 10.2% and 22.2% in AP and AP50, respec-
tively, matching TFA’s 10-shot performance and 2.6% and
5.9% higher than the Meta Faster R-CNN’s 2-shot perfor-
mance in AP and AP50, respectively. Our model zero-shot
performance on the few-shot setting shows the power of
adapted multi-modal feature space and validates the effec-
tiveness of using CLIP Proposals as distillation regions.

3. Additional Ablation Study

Table 3 presents the experimental results on how the size
of the bounding box (bbox) that we use to crop the in-



Bbox Size General
L M S Avg

0.8x GT 62.3 54.0 23.2 47.1
1.0x GT 64.0 61.9 32.9 53.4
1.2x GT 61.3 62.2 36.9 53.9
1.5x GT 56.7 59.5 40.6 52.6
2.0x GT 50.5 52.6 42.9 48.9

Table 3. The classification accuracy (ACC) of the unadapted CLIP
on COCO instances with different sizes of the GT bboxes to crop
the instances. We decide to use the 1.2x enlarged GT bbox to crop
the instance since it has the best average ACC.

Epoch Distill Region Base Novel Overall
12 RPN Proposal 56.9 24.6 48.5
12 CLIP Proposal 55.7 30.4 49.0
36 RPN Proposal 60.2 24.3 50.8
36 CLIP Proposal 59.9 31.6 52.1

Table 4. Ablation study on using CLIP Proposals as distillation in
COCO benchmark. The model trained with CLIP Proposals has
much better performance on novel categories.

stances in the COCO [4] dataset affects the classification
accuracy (ACC) of the unadapted CLIP [5]. For the large
objects, the more accurate bbox provided the higher ACC
CLIP can achieve. For the small objects, CLIP needs more
background information to be correctly classified. In all set-
tings, the average ACC over all three sizes of the bbox is still
much lower than the classifier of the well-trained detector,
indicating the domain gap between the training data of the
CLIP and the detection dataset exists. We use the 1.2x GT
bbox to crop the base GT instance since it has the highest
average ACC.

We provide an additional ablation study in Table 4. We
train all models with the adapted CLIP features. For the
models trained with 12 epochs, the performance on novel
categories of the model trained with the RPN proposals
is 5.8% lower than the one of the model trained with the
CLIP proposals, though the former has slightly better per-
formance on base categories. For the models trained with
36 epochs, two models (RPN proposal and CLIP proposal)
has similar performance on base categories, and the model
trained with the CLIP proposal features still have much
better novel category performance. This indicates that the
negative effect on model performance on base categories
caused by the CLIP proposal is negligible and can be allevi-
ated by a longer training schedule. It also shows that the in-
formation of base categories provided by the distillation has
redundancy, which may accelerate the model convergence
on base, but may not improve the model performance.

4. Additional Visualizations

Fig 1 shows the visualization of using CLIP Proposals
and RPN proposals as distillation regions in the COCO set-
ting. The blue boxes and green boxes represent the GT
bboxes of the novel and base categories. The red boxes rep-
resent the CLIP Proposals or the RPN proposals with the
highest IoU with the novel GT bboxes. The three images on
the left show that the CLIP Proposals can cover most of the
novel category objects although the boxes may not accurate,
while the RPN regards some of the novel objects as back-
ground and just ignores them. Although the CLIP proposals
are not accurate, the features extracted from these boxes are
accurate and meaningful. This phenomenon is also proved
by the experiments in [1]. Therefore, using the CLIP Pro-
posals as distillation regions provides more novel category
information and improve the detector’s performance on the
novel.

Fig 2 shows the tSNE embeddings of the COCO instance
features of the unadapted CLIP and the adapted CLIP. We
collect 20 GT instances for each base and novel category
in COCO setting and extract their features from unadapted
CLIP or adapted CLIP, and then generate the tSNE embed-
dings with these features. The GT instances in the adapted
CLIP feature space form some dense clusters. This indi-
cates that the CLIP’s feature space has been adapted in the
COCO dataset domain and the features become more dis-
criminating after adaptation, improving the classification
accuracy. The dots do not form a dense cluster mostly come
from the ”person” category. Since the instances of the per-
son usually show up with other categories instances and oc-
cluded by other objects, therefore the person categories fea-
tures are more scattered.
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Figure 1. Visualization of using CLIP Proposals or RPN proposals as distillation regions in COCO setting. The blue boxes and green
boxes represent the GT bboxes of the novel and base categories. The red boxes represent the CLIP proposals or the RPN proposals with
the highest IoU with the novel GT bboxes. The visualization shows the CLIP proposals can cover more novel objects even though the box
may not accurate.
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Figure 2. The tSNE embeddings of the COCO GT instance feature from the unadapted CLIP and adapted CLIP. The GT features from the
adapted CLIP form more dense clusters, indicating that the features become more discriminating and the CLIP is adapted into the detection
dataset domain.
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