
Global Occlusion-Aware Transformer for Robust Stereo Matching
Supplementary Material

Zihua Liu1, Yizhou Li2, and Masatoshi Okutomi3

Tokyo Institute of Technology, Japan
{zliu1,yli2}@ok.sc.e.titech.ac.jp,mxo@ctrl.titech.ac.jp3

1. More Implementation Details
1.1. Details About the Context Adjustment Layer.

The context adjustment layer in GOAT is designed to
refine the disparity map from a mono-depth aspect. We
employ a similar architecture adopted in STTR [7], which
is a simple refinement module comprised of multiple Res-
Blocks [3]. The architecture of the context adjustment layer
is demonstrated in Figure 1. It can recover disparity details
simply by using the left image Ileft and the current dis-
parity Iinit as the guidance to regress the disparity residual
Dres and derive the final disparity Dfinal. Such an image-
based refinement module can help refine the disparities in
extremely large occluded regions where no matching clues
can be utilized.
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Figure 1. Context Adjustment Layer

1.2. Occlusion Mask Generation for Supervision

SceneFlow: Because the SceneFlow [9] dataset’s ground-
truth disparity for the left view and right view are both an-
notated for all pixels, it becomes feasible to generate dense
ground-truth occlusion mask Mocc by directly applying left-
right consistency check [4]. The process can be described
as follows:

Mocc =

{
1 if Dgap ≥ 1,

0 otherwise,
(1)

Dgap = |DL(x, y)−DR(x+DL(x, y), y)|, (2)

where Dgap is the disparity difference between the corre-
sponding pixels at the left and right views, and DL and DR

are ground-truth disparity maps for left and right views, re-
spectively.
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Figure 2. Flipped inference consistency check for pseudo occlu-
sion mask generation.
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Figure 3. Predicted occlusion masks and corresponding ground
truth on different datasets.

KITTI and Middlebury: Generating the ground-truth
occlusion mask for the KITTI dataset [10] poses two sig-
nificant challenges: Firstly, KITTI’s ground-truth disparity
maps are derived through LiDAR, resulting in sparse dispar-
ity annotation. Secondly, the KITTI dataset only provides
the ground-truth disparity maps for the left images, which
makes it difficult to directly apply the left-right consistency
check to generate the occlusion masks. The STTR [7] at-
tempts to mitigate these challenges by solely focusing on
the out-of-bound occlusion mask, which comprises only the
pixels that fall outside the field of view (FOV) of the right
image. However, this method does not provide sufficient
supervision for the occlusion mask estimation. To tackle
this problem, we design a pipeline named flipped inference
consistency check to generate the pseudo occlusion masks.
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As demonstrated in Figure 2, we leverage a model pre-
trained on the KITTI dataset without occlusion supervision
as the disparity generator. Initially, the left-right image pair
is employed as input to produce a dense pseudo-left dispar-
ity. Subsequently, the left view image is horizontally flipped
to create a new right view, and similarly, the right view im-
age is flipped to generate a new left view. The new left-right
image pair will be sent to the identical disparity generator,
where the flipped pseudo-right disparity is obtained. Fi-
nally, the left-right consistency check between the pseudo
disparity maps for the left view and the right view is ap-
plied to generate a pseudo occlusion mask. For Middlebury
dataset [11], we use the same strategy for occlusion mask
generation. Figure 3 shows some examples of estimated
occlusion masks by proposed GOAT and their correspond-
ing ground truth on the SceneFlow, KITTI, and Middlebury
datasets.

2. More Training Details
In this section, we present further information regarding

the training process on different datasets.

2.1. Data Augmentation

A domain gap exists between synthetic SceneFlow
datasets and real-world KITTI and Middlebury datasets in
terms of color and disparity distribution. This poses a chal-
lenge for fine-tuning with SceneFlow pre-trained models,
which is further compounded by limited annotated training
data in real-world KITTI and Middlebury datasets. To en-
hance the network’s robustness and mitigate overfitting, we
employ augmentations as follows.
Asymmetric and Symmetric Chromatic Augmentations:
To address the issue of diverse lighting and exposure con-
ditions in real-world stereo images, we adopted a method
similar to that used in HSM [18]. This involved modifying
the brightness, contrast, and gamma of both left and right
images with random adjustment parameters from intervals
of [0.8, 1.2], with the option of using different parameters
for the left and right images. This allowed us to simulate
color and exposure variations commonly observed in real
scenes.
Color Domain Adaption: To alleviate the difference in
color distribution between synthetic data and real-world
data, we used color domain adaptation augmentation fol-
lowing [13]. This method utilizes normalization techniques
in the LAB color space to reduce the distribution gap be-
tween the two types of data.
Vertical y-offset and Flip: To simulate the disparity drift
problem caused by imperfect calibration, we applied the y-
offset augmentation from [18], which randomly shifts the
y-direction pixels in the right image by an offset within [-
2,2] pixels. We also utilized symmetric vertical flipping for
both left and right views to improve disparity estimation ac-

curacy across all image regions and prevent location bias.
Asymmetric Masking: Similar to [18], we replaced the
random patches of the right images with mean values of the
whole images. By applying this, it will increase the propor-
tion of occluded areas, making the Occlusion-Aware Global
Aggregation Module (OGA) more effective. The size of
the patch to be replaced was randomly sampled between
[40,40] and [120,180].

2.2. Training Setup

SceneFlow: As described in the paper, for training on
the SceneFlow dataset, we use all three sub-sets (Flyingth-
ings3D, Driving, and Monkaa) within a total of 35K images.
We consider a random crop of 320 × 640 with a batch size
of 8 and a maximum disparity of 192. The whole training
process on SceneFlow is performed with 4 NVIDIA RTX
3090 GPUs without data augmentation.
KITTI: In regards to the fine-tuning on the KITTI 2015
dataset, the color domain adaption described in Section 2.1
was initially employed to fine-tune the pre-trained model
for an additional 40 epochs on the SceneFlow dataset, uti-
lizing a learning rate of 1e-4. Following this, we used mixed
datasets containing KITTI 2012 and KITTI 2015 with in to-
tal of 400 pairs of images for the training of the first 400
epochs. We chose the model with the best performance
on the validation set, followed by another 200 epochs of
fine-tuning on the KITTI 2015 training set to obtain the fi-
nal model. The whole training process was conducted on 2
NVIDIA RTX6000 GPUs, with a patch size of 320×1088.
Middlebury: To address the limited amount of training
data in the Middlebury dataset, we followed the simi-
lar strategy utilized in [6] by augmenting the Middlebury
dataset to the 20% amount of the SceneFlow dataset with
techniques mentioned in 2.1. We conducted mixed training
for 100 epochs and then fine-tuned the model on the Mid-
dlebury dataset alone for another 500 epochs to get the final
model.

3. Intermediate Outputs for the OGA Module

Similar to [8], the proposed OGA module is a GRU-
based iterative refinement module. To further demonstrate
how the OGA module uses global correlation to refine the
disparities in the occluded area, we illustrate intermediate
disparity outputs of the OGA module of each iteration in
the KITTI dataset in Figure 4.

The OGA module applies a global attention mechanism
to aggregate features within occluded regions, thereby en-
hancing the accuracy of disparity estimations. Our findings
indicate that as the number of iterations of the OGA module
increases, the estimated disparity progressively improves.
It is worth noting that applying the OGA module only once
can already yield considerable enhancement in the disparity
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Figure 4. Intermediate Outputs for OGA module. The third image of the first row illustrates the global attention map of the location
marked by a red dot in the left image. Images in the second row and the third row demonstrate the disparity estimation results at the
different iterations using the proposed OGA module. Through iterative refinement using the OGA module, the disparity estimation improves
progressively, particularly in occluded regions.

estimation compared with the preliminary results as shown
in Figure 4.

4. Additional Experiments Results
4.1. More Comparisons on the SceneFlow dataset

‘In this subsection, we will provide more comparisons
with the proposed GOAT and other SOTA methods on the
SceneFlow dataset. Based on the results presented in Table
1, it is apparent that the proposed GOAT surpasses all other
evaluated approaches in regards to both the overall end-
point-error (EPE) and the EPE at the occluded regions(EPE-
Occ). Furthermore, the proposed approach demonstrates a
lower rate of outliers, as indicated by P1 and P3 values.

Furthermore, an important aspect of efficient neural
network architecture is the training parameters (Params)
as well as their computing complexities, which are often
quantified by the number of multi-accumulate operations
(Macs). As shown in Table 2, our GOAT-T with 1/8 res-
olution can achieve a competitive performance with the
small-est Macs and rather small parameters compared with
the latest PCWNet [12] and IGEVStereo [16]. However,
transformer-based methods inherently suffer from quadratic
computational complexity where the GOAT-B has 4 times
larger Macs when increasing the resolution to 1/4.

We present a comprehensive analysis with visualization
of the estimated disparity on the SceneFlow dataset which
can be inferred in Figure 6. Compared with other notable
networks, the proposed GOAT can generate better dispar-
ity estimation results around the thin structures and in the
texture-less regions with the assistance of the proposed par-
allel disparity and occlusion estimation module (PDO). Be-
sides, our proposed method displays strong robustness in

Table 1. we compare the performance of our proposed methods
with other notable works on the SceneFlow dataset. We present
the end-point-error (EPE) results for disparities in overall (All) re-
gions, as well as occluded regions (Occ), and report P1 and P3
errors. The best-performing method is highlighted in Bold.

Method EPE P1 Error P3 ErrorEPE-All EPE-Occ
DispNetC [9] 1.68 - - -
StereoNet [5] 1.07 3.31 13.7% 5.3%

AANet++ [17] 0.72 2.44 10.4% 4.0%
PSMNet [1] 1.09 3.14 11.1% 4.6%
GANet [19] 0.84 2.83 8.8% 3.8%
GwcNet [2] 0.77 2.47 8.7% 3.9%

RAFT-Stereo [8] 0.69 2.14 7.9% 3.3%
STTR-light [7] 4.14 23.9 16.4% 10.7%
ACVNet [15] 0.48 1.65 6.2% 2.9%
EDNet [20] 0.63 2.08 8.2% 3.9%

IGEVStereo [15] 0.47 1.62 6.6% 3.3%
PCW-Net [12] 0.86 2.54 9.1% 4.0%
GOAT (Ours) 0.47 1.53 5.6% 2.7%

Table 2. Numbers of training parameters (Params) and multi-
accumulate operations (Macs) compared with other lastest meth-
ods. We use an input resolution of 320×640 for Mac’s computa-
tion.

Method Params Macs EPE
ACVNet [15] 7.1M 465.1G 0.48

RAFTStereo [8] 11.1M 654.8G 0.69
PCW-Net [12] 35.8M 768.6G 0.86

IGEVStereo [16] 12.6M 541.6G 0.47
GOAT-T (Ours) 10.0M 192.0G 0.56
GOAT B(Ours) 12.1M 858.3G 0.47



Table 3. Ablation study of our proposed GOAT on the FallingThings [14] Dataset. ”PDO” is short for Parallel Disparity and Occlusion Es-
timation Module. ”OGA” is short for Iterative Occlusion-Awareness Global Aggregation Module. We calculated the EPE and P1(outliers)
both in the overall and the occluded regions, separately.”*” means a higher resolution.

Method
Disparity

Estimation
Update
Module CA

Layer
EPE P1(%) Occ

mIOU Res
Cost

Volume PDO RAFT OGA All Occ All Occ

Baseline ✓ ✓ 0.53 2.30 5.9% 28.9% - 1/8
PDO ✓ ✓ 0.41 1.65 5.2% 26.7% 0.905 1/8

PDO + OGA ✓ ✓ 0.31 1.22 3.6% 20.2% 0.905 1/8
PDO + OGA + CA ✓ ✓ ✓ 0.29 1.18 3.4% 19.1% 0.906 1/8
PDO + OGA + CA* ✓ ✓ ✓ 0.25 1.11 2.7% 17.6% 0.913 1/4

Left Image Right Image Baseline PDO PDO + OGA PDO+OGA+CA
(Full)

Ground Truth Occlusion Mask

Figure 5. Visualizations of ablation studies on FallingThings Datset. We cropped and enlarge the selected part of the disparity map for
easier viewing.

the occluded regions where other notable approaches fail to
yield a satisfactory result in such ill-conditioned regions.

4.2. Supplementary Ablation Studies on the
FallingThings Dataset.

Besides ablation studies shown in the main paper, we
also conduct the ablation studies on the FallingThings [14]
dataset. Compared to random floating objects in SceneFlow
dataset, FallingThings dataset contains scenes with care-
fully placed objects, thus it has more realistic semantics and
occlusions. The related results can be shown in Table 3.

Compared with the Baseline, the model integrates with
the PDO module (designated as PDO) is able to improve the
overall performance by a big margin from 0.53 to 0.41. As
demonstrated in Figure 5, applying the PDO shows better
structural disparity performance where the baseline shows
blur and ambiguous disparity values.

Furthermore, Table 3 exemplifies the efficacy of the
OGA module. It demonstrates an enhancement in the per-
formance of disparity estimation within occluded regions,
reducing the disparity from 1.65 to 1.22, resulting in a 26%
improvement. This pattern is also observable in Figure 5,
where the PDO + OGA clearly shows better disparities in
the occluded regions.

Finally, the complete model incorporated with PDO and
OGA modules witnesses the best performance by showing
an EPE-Occ of 1.18.

4.3. More Comparisons on the KITTI dataset.

In this section, we will provide more visualization com-
parison results on the KITTI 2015 test set. As illustrated in
Figure 7, the proposed GOAT has more continuous disparity
estimation results in the occluded areas (regions within the
red bounding boxes.). But other most advanced methods,
such as PCWNet [12] and IGEVStereo [16], have obvious
outliers and disparity discontinuities. Furthermore, our pro-
posed GOAT model demonstrates superior robustness com-
pared to alternative networks, as evidenced by its ability to
produce more accurate structural modeling of street scenes
with fewer artifacts. This characteristic is highly advanta-
geous for autonomous driving applications.

4.4. More Comparisons on the Middlebury dataset.

In addition to the generalization evaluation visualization
mentioned in our paper, we also fine-tuned the SceneFlow
pre-trained model on the Middlebury dataset with half
resolution (H) following the training scheme outlined
in 2.2. More visualization results can be inferred from
Figure 8, where our proposed method demonstrates better
structural disparity estimation and fewer artifacts.

References
[1] J. Chang and Y. Chen. Pyramid stereo matching network.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5410–5418,
2018. 3



[2] X. Guo, K. Yang, W. Yang, X. Wang, and H. Li. Group-wise
correlation stereo network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3268–3277, 2019. 3

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, 2016. 1

[4] T. Kanade and M. Okutomi. A stereo matching algorithm
with an adaptive window: theory and experiment. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
16(9):920–932, 1994. 1

[5] Sameh Khamis, Sean Fanello, Christoph Rhemann, Adarsh
Kowdle, Julien Valentin, and Shahram Izadi. Stereonet:
Guided hierarchical refinement for real-time edge-aware
depth prediction. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), September 2018. 3

[6] Jiankun Li, Peisen Wang, Pengfei Xiong, Tao Cai, Ziwei
Yan, Lei Yang, Jiangyu Liu, Haoqiang Fan, and Shuaicheng
Liu. Practical stereo matching via cascaded recurrent net-
work with adaptive correlation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 16263–16272, 2022. 2

[7] Zhaoshuo Li, Xingtong Liu, Nathan Drenkow, Andy Ding,
Francis X Creighton, Russell H Taylor, and Mathias Un-
berath. Revisiting stereo depth estimation from a sequence-
to-sequence perspective with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 6197–6206, 2021. 1, 3

[8] Lahav Lipson, Zachary Teed, and Jia Deng. Raft-stereo:
Multilevel recurrent field transforms for stereo matching. In
International Conference on 3D Vision (3DV), pages 218–
227. IEEE, 2021. 2, 3
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Figure 6. Visualization comparison of estimated disparities on the SceneFlow dataset. Our proposed GOAT demonstrates more structured
and continuous disparity results in the white bounding box.
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Figure 7. Visualization comparison of estimated disparities on the KITTI 2015 dataset. Note our proposed GOAT can generate more
detailed disparities outputs, especially in the occluded regions compared with other SOTA networks.
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Figure 8. Visualization comparison of estimated disparities on the Middlebury test set.
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