
Appendix

A. Algorithm and implementation details

A.1 Additional motivation and hypothesis

The degradation-restoration process One critical as-
pect of this work is that the degradation and restoration
processes are optimized jointly instead of individually.
One hypothesis of ours is that LatentDR implements an
implicit adversarial process: The degradation step D aims
to extract features that are (incorrectly) considered as non-
discriminative by the classifier g, while the restoration
step R learns to recover discriminative components (which
might be otherwise ignored due to overfitting). As shown in
Table 2 in the paper, our ablations demonstrate that only
when D and R are jointly applied, is there a significant
enhancement in performance. Additionally, our restora-
tion step R is guided by the classifier, which prevents it
from being trivial in contrast to a Euclidean distance. We
provide more evidence through visualizations as shown in
Figure 6(A), the majority of the restored samples (▼) are
shifted away from their queries (⋆), and many are out of the
training distribution (gray).

Distribution awareness Another crucial aspect of this
work is the use of distribution awareness. In our ablation
experiments, we show that using a distribution-aware ap-
proach to create degraded samples outperforms unstruc-
tured perturbations generated through additive Gaussian
noise. We hypothesize that since LatentDR apply D and
R as transformers that consider sample-to-sample relation-
ships, they would alter the gradient flow [18], and help the
encoder f to learn better representations. While our experi-
ments and ablations provide strong evidence that suggests
that LatentDR can be used as a plug-and-play approach
in diverse tasks (domain generalization, long-tail recogni-
tion, and medical imaging classification), without strong
assumptions or modifications of the sample/label distribu-
tions, it remains an interesting problem on which assump-
tion of distribution LatentDR need for it to work.

A.2 Algorithm details

Pseudocode LatentDR can be implemented through the
below pseudocode. During the training stage, the degrada-
tion operator D and the restoration operator R would create
latent augmentations (zd, ỹ) and (zr, y), correspondingly.
The augmented latents would guide the model to learn the
relationship across samples, and thus generalize better to
unseen sources which span several training domains. Dur-
ing inference, both the degradation and restoration opera-
tors are removed.

Algorithm 1: Pseudocode of LatentDR
def train(z, g, y, D, R):

# z: a batch of latents
# g: a classifier
# y: one-hot labels of z
# D: the degradation operator
# R: the restoration operator
zd = D(z)
zr = R(zd, z)
ỹ = y.sum(0)/y.shape[0]
l1 = F.cross entropy(g(z), y)
l2 = F.cross entropy(g(zd), ỹ)
l3 = F.cross entropy(g(zr), y)
loss = l1 + l2 + l3
loss.backward()

-
def pred(z, g):

# The prediction stage
return g(z)

Algorithm variants For the degradation and restoration
operators D and R, we tested two simple variants of the
transformer layer. The formulation of the two variants are
denoted as below:

Z ′
ℓ+1 = LN(Zℓ +AttN(Zℓ))

Zℓ+1 = LN(Z ′
ℓ+1 + FF(Z ′

ℓ+1)), 0 ≤ ℓ ≤ L− 1
(13)

Z ′
ℓ+1 = LN(Zℓ) + AttN(Zℓ)

Zℓ+1 = LN(Z ′
ℓ+1) + FF(Z ′

ℓ+1), 0 ≤ ℓ ≤ L− 1
(14)

where AttN denotes either the self-attention opera-
tion (MSA(·)) or the pooling operation (Pool(Ω(·))) for
LatentDR (SA) or LatentDR (Pool). In equation 13 and
14, the layerwise normalization (LN) is applied later than
or prior to the attention (AttN) and feedforward (FF) opera-
tions, respectively. We used the equation 13 variant for our
experiments in DomainBed and medical imaging classifica-
tion tasks, where we did not observe a significant difference
between the two variants. In long-tail recognition experi-
ments, we used the equation 14 variant, where we observed
that it outperforms the other variant by a large margin.

A.3 Implementation details

In all our experiments, we used a one-layer Transformer en-
coder for both the degradation process and the restoration
process for simplicity.

DomainBed experiments For all of the benchmark mod-
els, we follow the training and evaluation protocol as in



[10], where we used their default algorithm-agnostic hyper-
parameters including batch size, learning rate, dropout, and
weight decay. Due to the large loss value of LatentDR,
we performed a fixed learning rate adjustment of 50% for
all of our experiments, and fixed the other hyperparame-
ters. LatentDR also contains many algorithm-specific pa-
rameters, including the dimensionality of the transformers
(both the attention head dimension dim-head and the feed-
forward dimension dim-ff), and transformer dropout rate.
Searching all hyperparameters on each dataset would re-
quire heavy computational resources. Thus, we search the
algorithm-specific hyperparameters on the PACS datasets,
and use the same hyperparameters on all other datasets.

For LatentDR (SA), we search dim-head and dim-ff in
[dim,dim/2,dim/4,dim/8], where dim is the latent space
dimensionality. The transformer dropout rate is searched in
20%, 50%, 70%. We used dim/4 for both dimensions, and
used 50% dropout rate after the parameter selection. Our
competitor model BatchFormer [18] is defaulted to select
dim for both dimensions and a dropout rate of 50% as in
their paper. To ensure the fairness of comparison, we per-
formed the same hyperparameter search for BatchFormer
and used their default values as it returns the best results.

For LatentDR (Pool), we search the hyperparameter
dim-head in [dim/8,dim/16,dim/32] and the hyperpa-
rameter dim-ff in [dim/4,dim/8]. The dropout rate is
fixed to be 50% due to the search results in the previous
model to reduce additional computational costs. We used
dim-head = dim/32, dim-ff = dim/8 after the parameter
selection. Interestingly, we noticed that replacing the self-
attention operator with a pooling operator requires fewer ad-
ditional parameters in training, while the additional stochas-
ticity ensures the robustness of the performance.

Medical imaging experiments For the first four datasets,
we follow the training pipeline and dataset splits in [61],
where we used a ResNet-18 for 2D images and a ResNet-
18-based 3D backbone to benchmark the performance. The
ResNet-18-based 3D backbone is built with the ACSConv
package. All models are trained for 100 epochs till con-
vergence. For Camelyon17, we followed the model, data,
and training setup in [48] and used a DenseNet-121 back-
bone. We used an SGD optimizer with lr=0.0001 and
momentum=0.9. All models are trained for 20 epochs with
a batch size=32. We applied the same set of hyperpa-
rameters based on our experiments in DomainBed, which
demonstrated the robustness of our approach as it is insen-
sitive to the selection of hyperparameters.

Long-tail recognition experiments Inspired by the ro-
bust performance of [18] on long-tail recognition tasks,
we applied our method on CIFAR-100-LT. We add
LatentDR (SA) on top of BCL and BALMS following

their default hyperparameter and training settings. For our
model, we used the same hyperparameters as above, and
used the eq.14 variant of transformer formulation to achieve
the best performance in long-tail recognition tasks.

B. Full results on DomainBed

We provide the full results for all augmentation methods
in all tested DomainBed datasets as below. Note that the
details of the break-down performance for other algorithms
can be found in [10] and [43].

PACS The breakdown performances are shown in Table
6, where σ is the standard deviation (SD).

A C P S Avg.
ERM 84.9 80.6 95.9 75.0 84.1
+ Mixup 84.2 79.4 96.0 72.8 83.1
+ CutMix 81.5 75.8 95.6 68.9 80.4
+ Manifold-Mixup 84.9 79.5 96.7 75.8 84.2
+ MixStyle† 86.8 79.0 96.6 78.5 85.2
+ BatchFormer 82.6 79.3 95.4 73.5 82.7
+ LatentDR (SA) 87.4 81.2 97.8 76.7 85.8

SD (±σ) 1.3 1.3 0.2 1.8 0.8
+ LatentDR (Pool) 86.3 82.6 97.1 79.2 86.3

SD (±σ) 1.1 1.4 0.4 1.7 0.9

Table 6. Full results on PACS.

VLCS The breakdown performances are shown in Table
7, where σ is the standard deviation (SD).

C L S V Avg.
ERM 96.2 63.9 72.2 74.4 76.7
+ Mixup 97.7 64.8 70.9 74.2 76.9
+ CutMix 95.8 62.7 71.0 70.0 74.9
+ Manifold-Mixup 98.4 62.1 75.1 75.7 77.8
+ MixStyle† 98.6 64.5 72.6 75.7 77.9
+ BatchFormer 97.0 64.5 70.9 74.5 76.7
+ LatentDR (SA) 97.8 64.5 73.9 78.4 78.7

SD (±σ) 1.0 0.9 1.6 1.6 0.7
+ LatentDR (Pool) 98.0 66.2 69.4 78.4 78.0

SD (±σ) 0.6 1.2 1.0 1.7 0.5

Table 7. Full results on VLCS.

Office-Home The breakdown performances are shown in
Table 8, where σ is the standard deviation (SD).

TerraIncognita The breakdown performances are shown
in Table 9, where σ is the standard deviation (SD).



A C P R Avg.
ERM 58.8 52.0 73.3 75.1 64.8
+ Mixup 61.8 53.3 75.6 77.2 67.0
+ CutMix 61.2 52.7 77.0 76.6 66.9
+ Manifold-Mixup 63.0 54.4 75.4 76.8 67.4
+ MixStyle† 51.1 53.2 68.2 69.2 60.4
+ BatchFormer 60.0 51.9 74.5 76.7 65.8
+ LatentDR (SA) 65.3 54.9 77.3 78.5 69.0

SD (±σ) 0.5 1.0 0.7 0.5 0.3
+ LatentDR (Pool) 63.6 56.1 75.6 78.2 68.4

SD (±σ) 0.5 0.4 0.8 0.6 0.3

Table 8. Full results on Office-Home.

L100 L38 L43 L46 Avg.
ERM 54.2 41.0 55.4 37.5 47.0
+ Mixup 59.8 41.9 56.3 33.9 48.0
+ CutMix 63.5 50.1 60.5 34.3 52.1
+ Manifold-Mixup 57.4 41.4 55.3 31.1 46.3
+ MixStyle† 54.3 34.1 55.9 31.7 44.0
+ BatchFormer 54.0 43.4 56.0 41.0 48.6
+ LatentDR (SA) 49.6 47.1 58.2 44.2 49.8

SD (±σ) 2.6 2.8 1.1 2.5 1.5
+ LatentDR (Pool) 57.6 46.8 58.8 34.8 49.5

SD (±σ) 3.6 3.0 1.0 2.2 1.9

Table 9. Full results on TerraIncognita.

DomainNet The breakdown performances are shown in
Table 10.

C. Additional ablations

Sharing classifier weights. Our model trains a classifier
g on top of the encoder f , and uses the same classifier g
to regularize the model to learn degraded samples and re-
stored samples. Following [18], we tested whether training
two different classifiers, one for the original loss, and the
other for the corruption/restoration steps, would benefit the
training. With a separate classifier, our model gets an aver-
age of 83.7% accuracy on PACS, an over 2% decrease. It
seems it is critical to share classifier weights for our method.
We hypothesize that this is because BatchFormer relies on
the gradient flow across samples to guide learning, while
LatentDR uses latent augmentations to regularize training.

Increasing the batch size. To understand if our method
would benefit from learning with larger batch size, we eval-
uate the performance of LatentDR on the PACS dataset
with B = [4, 8, 16, 32, 64, 100], where each training do-
main provides B samples for training (thus, the batch size
is 3B for the PACS dataset). As shown in Figure 5, training
LatentDR requires a sufficiently large batch size to capture

Figure 5. Ablation on batch size. We evaluate the performance of
LatentDR (SA) with different batch size on the PACS dataset.

Figure 6. Latent queries (⋆), the degraded (×), and the restored
(▼). The left two figures show all training data as background.

rich and meaningful sample-to-sample relationship across
different classes and domains. However, further increas-
ing the batch size does not further increase the performance
of our method. We hypothesize that it might be challeng-
ing for the small-scale transformer to capture information
across too many tokens inside the same batch.

D. Additional visualizations

Additional details and copies of Figure 1 We provide
additional visualizations as in Figure 6 as additional evi-
dence to Figure 1. Figure 6(A) shows a random batch (96
samples) of queries (⋆), their degraded pairs (×), and their
restored pairs (▼) in one forward pass. We note that the
restored latents typically are far away from the original
latents. In Figure 6(B), we show how we generated Fig-
ure 1(B): For each random query (⋆) selected, we insert it
into 32 random batches from the training data, and plot both
their degraded and restored latents on top of the original rep-
resentations. In Figure 6(C), we generate Figure 1(A) using
a model that is trained on PACS for 300 steps, with training
data from the same class as the background.

Visualizations on the testing domain We provide the di-
rect visualization of latent space as in Figure 7, where we
use a T-SNE to visualize the model’s latent on the test-
ing domain (domain A) for models that are trained on the
PACS dataset. Different color represents different classes
for the classification task on PACS. As shown in Figure 7,



clipart infograph painting quickdraw real sketch Avg.
ERM 60.4 19.2 48.1 12.4 60.4 50.9 41.9
+ Mixup 62.1 20.9 49.1 14.5 60.2 51.2 43.0
+ CutMix 61.7 20.6 49.6 13.7 61.9 51.6 43.2
+ Manifold-Mixup 62.4 20.8 49.1 13.4 60.7 51.5 43.0
+ MixStyle† 51.9 13.3 37.0 12.3 46.1 43.4 34.0
+ BatchFormer 62.6 19.4 48.5 13.2 61.8 51.6 42.8
+ LatentDR (SA) 63.6 22.3 51.5 14.6 64.7 54.0 45.1
+ LatentDR (Pool) 61.1 21.1 50.6 15.3 62.8 52.5 43.9

Table 10. Full results on DomainNet.

Figure 7. Latent space direct visualization. We visualize the la-
tent spaces for ERM, Mixup [64], BatchFormer [18] (BF), and
LatentDR (Ours-SA) using a T-SNE on the testing domain. Our
model provides the best alignment (closeness of latents from the
same class) and the best uniformity (most information from the
training data is preserved).

LatentDR provides the most clustered latents for each
class in comparison to other methods, while for each class,
LatentDR provides clusters with the most circular shape.
These properties are further demonstrated through the mea-
surement of alignment and uniformity, where our method
achieves the best ‘closeness’ score for classification, and the
best latent ‘diversity’ score.




