
Supplementary Material

A Results on ImageNet-1K classification
Setup We also train and evaluate SViT-S on ImageNet-
1K [1]. We follow the training settings in DeiT [9] and ini-
tialize our model from public pre-trained weights of DeiT-
S. We use an AdamW optimizer to train the our model for
30 epochs and set the learning rate as batchsize

512 × 1e-5. The
model is trained on a single machine with 4 V100 GPUs
with a batch size of 1024.

Results We compare the throughput of SViT-S and the
dense counterpart DeiT-S in Table 1. SViT achieves
47% higher throughput than the dense counter part while
only sacrificing -0.4% accuracy, effectively improving the
accuracy-speed trade off. We also compare SViT-S with
other token pruning models in Table 2. Although SViT
is not originally targeted at classification tasks, it outper-
forms all models that use gating modules (DynamicViT [8],
SPViT [4], AdaViT [6]), the models using special prun-
ing techniques such as adaptive computation time [3] (A-
ViT [11]) and reinforcement learning (IA-RED2 [7]), and
a model that uses class token’s attention (Evo-ViT [10]).
However, when it comes to classification, EViT and ATS
demonstrate superior performance over SViT. This is pri-
marily due to their utilization of the class token, a feature
specifically designed for the classification task.

Model Top-1 Accuracy GFLOPS images/s
DeiT-S [9] 79.8 4.6 1524
SViT-S 79.4 3.0 2246

Table 1. Model Performance of DeiT-S and SViT-S. Throughput
is measured on a single A100 GPU with batch size 512.

Model epochs GFLOPS Top-1 Acc(%)

DeiT-S [9] - 4.6 79.8
DynamicViT ‡ [8] 30 3.0 79.3 (-0.5)
EViT [5] 30 3.0 79.5 (-0.3)
Evo-ViT [10] 300 * 3.0 79.4 (-0.4)
Evo-ViT [10] 30 † 3.0 79.2 (-0.6)
A-ViT [11] 100 3.6 78.6 (-1.3)
ATS [2] 30 3.0 79.7 (-0.1)
AdaViT [6] 150 2.3 77.3 (-2.5)
IA-RED2 [7] 90 3.2 79.1 (-0.7)
SPViT ‡ [4] 60 2.7 79.3 (-0.5)
SViT (Ours) 30 3.0 79.4 (-0.4)

Table 2. Model performance on ImageNet-1K. * means training
from scratch. † indicates experiments trained by us. ‡ uses addi-
tional knowledge distillation. Note that EViT, Evo-ViT and ATS
depend on the class token, designed specifically for classification,
to help improve their performance. On the other hand, SViT tar-
gets more general tasks and does not rely on the attention map of
the class token for token pruning.

B Influence of Batch Size on Throughput

It is not straightforward to do batch inference with dif-
ferent number of tokens per image, as the tensor cannot be
easily arranged in a regular shape, therefore, we use pytorch
nested tensor1 to efficiently process the varying-length se-
quences of tokens. The tokens to be processed are first
gathered into a nested tensor, then passed to a ViT block
constructed with nested tensor operations, and finally un-
nested and scattered back to the feature map.

We test the throughput of SViT and DeiT on ImageNet-
1k for varying batch sizes as follows: for each batch size,
we randomly fetch 30 batches from the validation set, and
for each batch we run the inference for 50 times and take
the average throughput as the speed for this batch. Then we
calculate the mean and standard deviation over the speeds
of the batches. As seen in Figure 1, proportional throughput
gains can be obtained from increased batch sizes for SViT,
which verifies that nested tensor could be a promising way
of handling the varying-sized tensors in the dynamic sce-
nario. However, note that the nested tensor is not fully de-
veloped and is still in a prototype stage, and leads to some
overhead when the batch size is small.

In the case of object detection and instance segmenta-
tion, we abstain from using nested tensors due to the diffi-
culties associated with creating a large batch size for high-
resolution images. Consequently, we centered our efforts
on inference with a batch size of 1 for these dense tasks.
Future advancements in this technique, along with other
related breakthroughs, may facilitate additional speedups.
These improvements could be readily integrated into SViT,
as previously demonstrated in classification tasks.

Figure 1. Throughput vs. Batch Sizes of SViT-S and DeiT-S on
ImageNet-1K.

1https://pytorch.org/docs/1.13/nested.html

https://pytorch.org/docs/1.13/nested.html


C ViT has different layer-wise attention
Vision Transformers do not always attend to the same set

of tokens, even for the important ones. An illustrated in the
example in Figure 2, the dense DeiT-S [9] first attends to the
background tokens in the 1st layer, and then attends to joint
regions of the human face and the rabbit in the next three
layers. After that, the human face, rabbit eyes, and rab-
bit ears are attended in different layers, respectively. This
inspired us to reactivate previously pruned tokens, as each
layer can have its customized preference on tokens.

D Discussion on Prior-Art Token Pruning
Methods

Since the class token does not originally exist for ViT
models on dense tasks, we append a randomly initialize a
class token for attention-based token pruning models (EViT
[5], ATS [2], and Evo-ViT [10]), which can help them prune
tokens reasonably on dense tasks.

Among these models, Evo-ViT is unique because it pre-
serves pruned tokens in the feature map. However, it has a
tendency to converge to a consistent set of tokens and thus
does not reuse pruned tokens, as shown in Figure 3. We
conjecture this is because Evo-ViT uses a moving average
to update the attention scores of processed tokens, which in
turn is used to select tokens to be pruned. Since updating
the scores is only done for processed tokens, the pruned
tokens do not have a chance to change their scores, and
thus causing the model to consistently use the same selec-
tion scheme. As Figure 3 illustrates, Evo-ViT consistently
selects bottom-left tokens from its first layer onward, even
though they are irrelevant background tokens. In contrast,
our model can dynamically choose different tokens for each
layer, and reuse important ones.

E Qualitative Examples
We provide more visualizations of SViT-S on COCO in

Figure 4. To better understand the token selection of SViT,
we split the tokens into two sets: object tokens and back-
ground tokens, according to the prediction mask. Then we
compute the token usage for them separately. The first ob-
servation is that SViT uses a larger ratio of foreground to-
kens than background tokens. When the proportion of the
object in the image is small, the foreground token usage can
be as high as 90%. In cluttered images, such as the sheep
example in the 4th row, not all foreground tokens are es-
sential; less discriminative foreground tokens can still be
pruned without affecting performance.

References
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2009. 1

[2] Mohsen Fayyaz, Soroush Abbasi Koohpayegani,
Farnoush Rezaei Jafari, Sunando Sengupta, Hamid
Reza Vaezi Joze, Eric Sommerlade, Hamed Pirsiavash, and
Juergen Gall. Adaptive token sampling for efficient vision
transformers. In Eur. Conf. Comput. Vis. (ECCV), 2022. 1,
2

[3] Alex Graves. Adaptive computation time for recurrent neural
networks. arXiv preprint arXiv:1603.08983, 2016. 1

[4] Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei
Niu, Mengshu Sun, Bin Ren, Minghai Qin, Hao Tang, and
Yanzhi Wang. Spvit: Enabling faster vision transformers
via soft token pruning. In Eur. Conf. Comput. Vis. (ECCV),
2022. 1

[5] Youwei Liang, Chongjian GE, Zhan Tong, Yibing Song, Jue
Wang, and Pengtao Xie. EViT: Expediting vision trans-
formers via token reorganizations. In Int. Conf. Learn.
Representations (ICLR), 2022. 1, 2

[6] Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan,
Zuxuan Wu, Yu-Gang Jiang, and Ser-Nam Lim. Adavit:
Adaptive vision transformers for efficient image recognition.
In IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2022.
1

[7] Bowen Pan, Rameswar Panda, Yifan Jiang, Zhangyang
Wang, Rogerio Feris, and Aude Oliva. Ia-red2:
Interpretability-aware redundancy reduction for vision trans-
formers. In Advances in Neural Information Processing
Systems, volume 34, pages 24898–24911, 2021. 1

[8] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. DynamicVit: Efficient vision
transformers with dynamic token sparsification. In Advances
in Neural Information Processing Systems, 2021. 1

[9] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Herve Jegou. Training
data-efficient image transformers & distillation through at-
tention. In Proc. Int. Conf. Mach. Learning (ICML), July
2021. 1, 2

[10] Yifan Xu, Zhijie Zhang, Mengdan Zhang, Kekai Sheng, Ke
Li, Weiming Dong, Liqing Zhang, Changsheng Xu, and
Xing Sun. Evo-vit: Slow-fast token evolution for dynamic
vision transformer. In AAAI Conf. Artificial Intell., 2022. 1,
2

[11] Hongxu Yin, Arash Vahdat, Jose M. Alvarez, Arun Mallya,
Jan Kautz, and Pavlo Molchanov. A-ViT: Adaptive tokens
for efficient vision transformer. In IEEE Conf. Comput. Vis.
Pattern Recog. (CVPR), 2022. 1



Figure 2. The first row: the attention from the 1st layer to the 6th layer; the second row: the attention maps from the 7th layer to the 12th

layer. Compared to the dense DeiT-S model, SViT-S keeps the most important features for each layer, especially the human face, the rabbit
eyes, and the rabbit ear. Since ViT’s attentions can be different across different layers, SViT does not keep the same tokens across different
layers. The attention maps are visualized as the mean of the attention from class token’s heads.

Figure 3. Top: token pruning for Evo-ViT-T. Bottom: token pruning for SViT-T. Evo-ViT has the same keep ratio per layer, and tends to
use the same set of tokens for all its pruning layers, so the selection largely depends on its first pruning layer, which may not be optimal.
SViT can prune tokens independently for each layer, which is learned by the gating MLPs, and can reuse tokens according as needed.



Figure 4. More visualizations of SViT-S on COCO validation set. The token usage heat map shows the number of used layers per token.
The tokens are further split into two sets: foreground tokens and background tokens, and token usages are computed for them separately.


