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1. Implementation Details

1.1. Video Pre-processing

We adhere to the LAVISH open-source code guidelines
to preprocess the audio and visual frames of videos in
MUSIC-AVQA and v2.0. The majority of these videos have
a duration of 60 seconds. For videos shorter than 60 sec-
onds, we extend them by repeating the last visual frame
and the corresponding 1-second audio until reaching 60 sec-
onds, as per the LAVISH guidelines. Visual frames are ex-
tracted from videos at a rate of 1fps, yielding 60 frames
for each video. For audio, we sample the waveforms at a
16kHz rate. Given the large size of audio and visual frames,
models cannot process all frames from a video. Thus, we
implement the same down-sampling method as LAVISH,
extracting every 10th visual frame from the start of the
video, each paired with its corresponding 2-second audio
segment. After down-sampling, we are left with 10 visual
frames and 10 associated audio waveforms for each video.
To accommodate the input size of the Swin-Transformer-
V2 [9] (the backbone of LAVISH), we resize the image
of each frame to 192 × 192 × 3. For every 2-second au-
dio segment, we compute the mel-spectrogram using a 5.2-
millisecond frameshift and a kaldi fbank with 192 triangu-
lar mel-frequency bins. We then triple the mel-spectrogram
along the channel dimension, resulting in a tensor of size
192× 192× 3, same dimensions as the image input in each
frame.

1.2. LAVISH [8]

For LAVISH, we use the official open-source code im-
plementations and detail them below. The backbone of
LAVISH consists of a 2-tower Swin-Transformer-V2-Large
pretrained on ImageNet: one tower for visual input and the
other for mel-spectrogram input. Within each layer of the
two towers, two LAVISH adapters (a type of adapter [5] for
audio-visual learning) are inserted. One is positioned as the
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residual of the Multi-Head Attention [11] module, and the
other as the residual of the MLP module. Both the visual
and audio branches undergo cross-attention within these
adapters. For details about the LAVISH adapter, please re-
fer to the original paper.

The output from both the visual and audio backbones is
a 6 × 6 feature map with a channel size of 512. The audio
feature map is then mean-pooled across its spatial dimen-
sions to produce a 512-dimensional vector. This vector is
forwarded to the spatial grounding module, which attends
to the visual feature map for audio-visual fusion. The re-
sult of the spatial grounding is a 512-dimensional vector
for each frame, with a total of 10 frames. This is then di-
rected to the temporal grounding module, which is a single-
layer Multi-Head Attention between the 512-dimensional
question vector from a 2-layer LSTM [4] encoder and the
spatial grounding outputs on the temporal axis. The fi-
nal output from the temporal grounding module is a sin-
gle 512-dimensional vector, which is subsequently concate-
nated with outputs from other branches. In LAVISH, both
the spatial and temporal grounding modules are consistent
with the methods described in the AVST work [7]. For fur-
ther details, please refer to it.

1.3. AST branch

We apply the pretrained checkpoint of Audio-
Spectrogram-Transformer (AST) on AudioSet (“Full
AudioSet, 10 tstride, 10 fstride, with Weight Averaging
(0.459 mAP)”) as the backbone for our “AST” branch. For
the audio spectrogram input, we follow the processing steps
outlined in the AST paper. Each 2-second audio waveform
segment is converted into a series of 128-dimensional log
Mel filterbank (fbank) features, using a 25ms Hamming
window at 10ms intervals. This results in a 128x204
mel-spectrogram, which is then used as the input for the
AST. Additionally, since the original pretrained AST is
designed for a 10-second mel-spectrogram input, whose
position embeddings are larger than those for a 2-second
input, we adjust it by symmetrically trimming the leftmost
and rightmost portions of the embedding matrix. This

1



ensures the position embeddings are compatible with our
2-second inputs.

Once the audio inputs are processed through AST, we
extract the hidden states from the final layer, selecting only
the last hidden state to produce a 768-dimensional audio
vector. A Linear layer is then added to project this audio
vector down to 512 dimensions, aligning with the channel
size of the visual feature maps in LAVISH. Subsequently,
we employ the same grounding operations as LAVISH, us-
ing shared weights in the grounding modules. This in-
volves computing the spatial grounding between the audio
vector and the LAVISH visual feature maps. The result-
ing output is then grounded with the 512-dimensional ques-
tion vector from the LSTM encoder (as in LAVISH) along
the temporal axis. The grounding output from the AST
branch matches the LAVISH branch in dimension, produc-
ing a 512-dimensional vector. This grounding output from
the AST branch is concatenated with outputs from other
branches to form an ensemble vector.

1.4. Cross-modal Pixel-wise Attention

The module receives two feature maps as inputs: an au-
dio spatial map and a visual spatial map. Both maps have
dimensions of 6 × 6 × 512. These maps are flattened to
36 × 512, and cross-attention is computed between them
along the spatial axis, as detailed in Section 4 of the main
paper. The module’s output is a 512-dimensional vector,
which is then directed to the temporal grounding module
(with shared weights) for question-related attention, consis-
tent with the other two branches. This temporal ground-
ing output remains a 512-dimensional vector and is con-
catenated with outputs from the other branches to form an
ensemble vector. Finally, the concatenated outputs from all
branches are forwarded to a 2-layer MLP with hidden sizes
of 512 and 42 (the vocabulary size of candidate answers)
respectively, producing the logits of the answer.

1.5. Training Details

We implement all models using PyTorch [10]. For LAV-
ISH and AVST, we train the models using cross-entropy
loss between the predicted and the ground truth answers,
along with an audio-visual matching loss by sampling non-
matching visual frames from other videos, as proposed in
AVST [7]. Following AVST and LAVISH, we assign a
weight of 0.5 to the audio-visual matching loss and 1.0 to
the cross entropy loss. For our “LAST” and “LAST-Att”
models, we use cross entropy loss only without audio-visual
matching loss. During training, we freeze the parameters of
all backbones, including the 2 Swin-Transformers in LAV-
ISH and the AST audio encoder. For LAVISH adapters, we
follow the paper to set a small learning rate of 8e-5. And
we set the learning rate of 3e-6 for the grounding modules
including our cross-modal pixel-wise attention module, and

the final prediction layer in AVQA. We use Adam [6] opti-
mizer to train all models. In terms of hardware configura-
tion, models are trained on 8 NVIDIA-V100 32GB GPUs
in data parallel mode. We configure the batch size to 24 for
data loading.

2. Data Collections and Statistics
2.1. Data Quality Control

To ensure the quality of our collected data, we annotate
all labels in conjunction with QA pairs by ourselves. Prior
to data collection, we meticulously review the QA pairs
across 33 templates. This helps us accurately understand the
questions and their corresponding videos, minimizing in-
consistent annotations stemming from misunderstandings.
Upon review, we discover significant inconsistency in a pre-
dominant question template within the Audio-Visual Exis-
tential category: “Is there a voiceover”. This inconsistency
arises from varying interpretations of the term “voiceover”
by previous annotators in MUSIC-AVQA. From the labels,
it is evident that some annotators perceived a human voice
layered over instrument sounds as a voiceover, while others
interpreted it as a generic “off-screen sound”. For consis-
tency, we adopt the latter definition for our annotations. As
a result, we adjust 13% of the annotations from this ques-
tion template in the training set. For each QA pair among
our additionally collected 8,136 samples, we have three in-
dividuals verify the annotation and only accept those that
received unanimous agreement.

2.2. Details of Distribution After Balance

Additional QA data We provide detailed statistics for
our additional QA pairs. As shown in Fig. 1, among our
8.1k QA pairs (+17.8% additional QA pairs to 45.6k in
MUSIC-AVQA [7] (updated version in their work)), Audio-
Visual questions constitute 52.1% of the total. This includes
Audio-Visual Existential at 15.3%, Audio-Visual counting
at 28.1%, and Audio-Visual Temporal at 8.7%. Visual ques-
tions account for 23.8%, with Visual Counting 17.3% and
Visual Location 6.5%. Audio questions comprise 24%, with
Audio Counting 21.8% and Audio Comparative 2.2%.

Additional Video Data We collect 1230 additional
real videos (+16.6% more real videos than MUSIC-AVQA
(7422)), sourcing from YouTube and YouTube-8M [1].
Among 1230 videos, 715 videos contain 3 or more instru-
ments, 249 are duets and the remaining 266 are solos. With
these additional videos mainly focusing on musical ensem-
bles, we enrich the dataset with more diverse videos and a
less skewed distribution of scene types. As illustrated in
Fig. 2, after collection, the proportion of other ensembles
has seen a large increase of 6.2%, moving from 14.8% to
21.0%.

Distribution of Each Bias Question Template Before



Figure 1. An overview of the distribution of our collected QA pairs
in each question type and question template.

Figure 2. Distribution of Scene Types

and After Balance We further show distribution of each
bias question template before and after balance, grouped by
question type and modality type, Fig. 3, Fig. 4 and Fig. 5
show Audio-Visual questions, Visual questions and Audio
questions respectively. Within each figure, we show spe-
cific counts for each answer category within the templates.
As evident from the data, our QA collection considerably
rectifies the majority of the skewed distribution present in
the original dataset. However, we acknowledge that certain
counting question templates remain biased towards fewer
counts. For instance, questions asking about the number
of distinct instrument types inherently lean towards smaller
counts, which makes the data collection of larger counts
very challenging.

3. Ablation Studies

To study the effectiveness of our proposed modules, the
“AST branch” and “Cross-Modal Pixel-wise Attention”, we
conduct an ablation study. In this study, we implement two
additional models that exclude these proposed modules.The

Table 1. Component Ablation Overview: A breakdown of com-
ponents used in each method. A (✓) indicates the component is
included in the method, while a (-) indicates its absence. “Swin-
A” denotes the LAVISH audio branch, “AST” denotes the AST
audio encoder, “CM-P-Attn” denotes cross-modal pixel-wise at-
tention module.

Model Swin-A AST CM-P-Attn
LAVISH [8] ✓ - -
Swin-AST - ✓ -
LAST ✓ ✓ -
LAVISH-Att ✓ - ✓
LAST-Att ✓ ✓ ✓

Table 2. Ablation Study: Evaluation Results on Balanced Test Set:
“Swin-AST” and “LAVISH-Att” v.s. Our 2 baselines and existing
methods. (Ext: Existential. Cnt: Counting. Temp: Temporal.
Comp: Comparative.)

Model Total Audio-Visual Visual Audio
Ext Temp Cnt Loc Comp Cnt Loc Cnt Comp

LAVISH [8] 73.18 73.83 60.81 73.28 65.00 63.49 81.99 80.57 84.37 58.48
Swin-AST 74.63 75.88 61.84 74.31 68.26 64.49 83.06 83.63 84.52 59.1
LAST 74.85 74.08 59.15 75.17 69.02 66.12 83.19 83.41 85.75 61.59
LAVISH-Att 75.32 75.47 63.39 74.37 68.37 64.94 83.72 84.08 86.32 61.74
LAST-Att 75.44 76.21 60.60 75.23 68.91 65.60 84.12 84.01 86.03 62.52

first model, termed “Swin-AST” model, retains only the vi-
sion branch of the LAVISH backbone, excluding the audio
branch and the LAVISH adapter. This model can be viewed
as an advanced version of the “AVST” model, given that it
substitutes more robust backbones (In AVST, vision branch
uses ResNet-18 [2] and audio branch uses Vgg-ish [3] pre-
trained on AudioSet). The second model, “LAVISH-Att”,
preserves just the LAVISH components (the 2-tower back-
bone, spatial grounding, and temporal grounding) and in-
tegrates our cross-modal pixel-level attention module. We
train and validate both models on MUSIC-AVQA v2.0, and
evaluate on the balanced test split. The ablated model com-
ponents are detailed in Table 1, and evaluation results are
summarized into Table 2.

As shown in the table, we observe that “Swin-AST”
achieves nearly on-par results with our “LAST” baseline,
and performs better than LAVISH with a +1.45% improve-
ment. This suggests the benefits of applying robust pre-
trained backbones for both the visual and audio branches
for AVQA task. Moreover, “LAVISH-Att”, even without
using a pretrained audio backbone, surpasses the LAVISH
baseline by +2.14%. However, it falls short by a mere
0.12% compared to our full model, “LAST-Att”. This con-
firms our hypothesis that integrating a fine-grained spatial
cross-attention module across feature maps of both modal-
ities can improve performance, especially when combined
with the existing spatial grounding module. In our experi-
ments, when we add only the cross-modal pixel-wise atten-
tion module and excluded the spatial grounding branch, the
model underperform from the outset, plateauing at a total



Figure 3. Distribution of Bias Audio-Visual Questions Before and After Balance

Figure 4. Distribution of Bias Visual Questions Before and After
Balance

Figure 5. Distribution of Bias Audio Questions Before and After
Balance

accuracy of 69.3%. We hypothesize that the fine-grained

attention module captures low-level feature details, while
the spatial grounding module abstracts high-level features.
They complement each other to bring the optimal result.
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