
Wakening Past Concepts without Past Data:
Class-Incremental Learning from Online Placebos

Yaoyao Liu1,2 Yingying Li3 Bernt Schiele2 Qianru Sun4

1Johns Hopkins University 2Max Planck Institute for Informatics, Saarland Informatics Campus
3University of Illinois Urbana-Champaign 4Singapore Management University

Abstract

Not forgetting old class knowledge is a key challenge
for class-incremental learning (CIL) when the model con-
tinuously adapts to new classes. A common technique to
address this is knowledge distillation (KD), which penal-
izes prediction inconsistencies between old and new mod-
els. Such prediction is made with almost new class data, as
old class data is extremely scarce due to the strict memory
limitation in CIL. In this paper, we take a deep dive into KD
losses and find that “using new class data for KD” not only
hinders the model adaption (for learning new classes) but
also results in low efficiency for preserving old class knowl-
edge. We address this by “using the placebos of old classes
for KD”, where the placebos are chosen from a free image
stream, such as Google Images, in an automatical and eco-
nomical fashion. To this end, we train an online placebo
selection policy to quickly evaluate the quality of stream-
ing images (good or bad placebos) and use only good ones
for one-time feed-forward computation of KD. We formulate
the policy training process as an online Markov Decision
Process (MDP), and introduce an online learning algorithm
to solve this MDP problem without causing much computa-
tion costs. In experiments, we show that our method 1) is
surprisingly effective even when there is no class overlap
between placebos and original old class data, 2) does not
require any additional supervision or memory budget, and
3) significantly outperforms a number of top-performing
CIL methods, in particular when using lower memory bud-
gets for old class exemplars, e.g., five exemplars per class.1

1. Introduction
AI learning systems are expected to learn new concepts

while maintaining the ability to recognize old ones. In
many practical scenarios, they cannot access the old data

1Code: https://github.com/yaoyao-liu/online-placebos

due to the limitations such as storage or data privacy but
are expected to be able to recognize all seen classes. A
pioneer work [35] formulated this problem in the class-
incremental learning (CIL) pipeline: training samples of
different classes are loaded into the memory phase-by-
phase, and the model keeps on re-training with new class
data (while discarding old class data) and is evaluated on
the testing data of both new and old classes. The key
challenge is that re-training the model on the new class
data tends to override the knowledge acquired from the old
classes [15, 30, 31, 34], and the problem is called “catas-
trophic forgetting”. To alleviate this problem, most CIL
methods [6, 9, 12–14, 23, 25, 27–29, 32, 35, 43, 52–55] are
equipped with knowledge distillation (KD) losses that pe-
nalize any feature and/or prediction inconsistencies be-
tween the models in adjacent phases.

The ideal KD losses should be computed on old class
data since the teacher model (i.e., the model in the last
phase) was trained on them. This is, however, impossible
in the CIL setting, where almost all old class data are in-
accessible in the new phase. Existing methods have to use
new class data as a substitute to compute KD losses. We
argue that this 1) hampers the learning of new classes as it
distracts the model from fitting the ground truth labels of
new classes, and 2) can not achieve the ideal result of KD,
as the model can not generate the same soft labels (or fea-
tures) on new class data as on old class data. We justify
this from an empirical perspective as shown in Figure 1 (a):
the upper bound of KD is achieved when using “old class
data”, and if compared to it, using “new class data” sees a
clear performance drop for recognizing both old and new
classes. In Figure 1 (b), we show the reason by diving into
loss computation details: when using new class samples (as
substitutes) to compute CE and KD losses simultaneously,
these two losses actually weaken each other, which does not
happen in the ideal case of using old class samples.

To solve the above issue, people tried to use unlabeled
external data (called placebos in this paper) to compute KD
losses (rather than using the new data) [17, 24]. First, this

(a) Average accuracy (b) Conceptual illustrations of the CIL losses (c) Selected placebos
Figure 1. (a) Average accuracy when computing KD losses on different data using iCaRL [35] on CIFAR-100. The KD losses (softmax
KL divergence loss) are computed on new class data (dark blue), placebos (of old class data) selected by our method (light blue), and old
class data green), i.e., the ideal case. (b) Conceptual illustrations of the loss problem if using new class data for KD. The dark blue
and orange numbers denote the predictions of old and new classes, respectively. It is clear in (i) that the objectives are different when using
a new class sample for KD (the oracle case is to have both “ascent”), e.g., the ground truth label for the second old class is 0, while the
“KD label” at this position is 0.8. This is not an issue when using the old class sample, e.g., in (ii), its ground truth label and “KD label”
have consistent magnitudes at the same position (1 and 0.7, respectively). (c) Our selected placebos for two old classes (“road” and
“table”) and their activation maps using GradCAM [38] on CIFAR-100. The free image stream is ImageNet-1k which does not have
class overlap with CIFAR-100. They are selected because their partial image regions contain similar visual cues to old classes.

idea is practical because we don’t need to allocate a large
memory budget for placebos. We can select a small number
of placebos from a free image stream, e.g., Google Image,
and delete them immediately after computing KD losses.
Second, this idea is effective because computing the KD
losses on placebos can help to recall the old class knowl-
edge without weakening the learning of new class data. As
shown in Figure 1 (a), compared to the conventional way of
using “new class data” (for KD), using placebos achieves
the same-level new class performance as using “old class
data”, and better old class recognition performance.

However, there are two open questions that need to
be addressed when using placebos. Q1: How to adapt
the placebo selection process in the non-stationary CIL
pipeline. The ideal selection method needs to handle the
dynamics of increasing classes in CIL, e.g., in a later in-
cremental phase, it is expected to handle a more complex
evaluation on the placebos of more old classes. Q2: How
to control the computational and memory-related costs dur-
ing the selection and utilization of placebos. It is not in-
tuitive how to process external data without encroaching
on the memory allocated for new class data or breaking
the strict assumption of memory budget in CIL. Existing
works [17, 51] cannot solve the above issues as they use
fixed rules for placebo selection and require a large amount
of memory to store the placebos.

We solve these questions by proposing a new method
called PlaceboCIL that can adjust the policy of selecting
placebos for each new incremental phase, in an online and
automatic fashion without needing extra memory. Specifi-
cally, to tackle Q1, we formulate PlaceboCIL as an online

Markov Decision Process (MDP) and introduce a novel on-
line learning algorithm to learn a dynamic policy. In each
new phase, this policy produces a phase-specific function to
evaluate the quality of incoming placebos. The policy itself
gets updated before the next phase. For Q2, we propose a
mini-batch-based memory reusing strategy for PlaceboCIL.
Given a free data stream, we sample a batch of unlabeled
data, evaluate their quality by using our phase-specific eval-
uation function (generated by the learned policy), and keep
only the high-quality placebos to compute the KD losses.
After this, we remove this batch totally from memory be-
fore loading a new batch. In our implementation, this batch
can be very small, e.g., 200 images. We randomly remove
the same size (e.g., 200) of new class data to keep the strict
assumption of memory budget.

We evaluate PlaceboCIL by incorporating it into mul-
tiple strong baselines such as PODNet [9], LUCIR [12],
AANets [25], and FOSTER [44], and conducting a care-
ful ablation study. Our results on three popular CIL bench-
marks show the clear and consistent superiority of Place-
boCIL, especially when using a low memory budget for old
class exemplars. For example, our method boosts the last-
phase accuracy by 6.9 percentage points on average when
keeping only 5 exemplars per old class in the memory. In
addition, it is worth mentioning that PlaceboCIL is surpris-
ingly efficient even when there is no class overlap between
placebos and original old class data. The reason is that
PlaceboCIL can make use of the local visual cues in place-
bos, e.g., similar visual cues of “table” are found on the
local regions of an “piano” (and “dishwasher”) image as
shown in Figure 1 (c).

Our contributions are three-fold. 1) A generic Place-
boCIL method that selects placebo images from a free im-
age stream to solve the KD issue in existing methods. 2) A
novel online learning algorithm for training a placebo selec-
tion policy and a mini-batch-based memory reusing strat-
egy to avoid extra memory usage. 3) Extensive compar-
isons and visualizations on three CIL benchmarks, taking
top-performing CIL models as baselines and with the same
strict assumption on memory.

2. Related Work

Class-incremental learning (CIL) methods can be divided
into three categories. Distillation-based methods intro-
duce different knowledge distillation (KD) losses to con-
solidate previous knowledge. The key idea is to enforce
prediction logits [22, 35], feature maps [9], or other es-
sential information [13, 40, 42, 44, 49] to be close to those
of the pre-phase model. Memory-based methods use a
small number of preserved old class data (called exem-
plars) [5,7,28,29,33,35,39,45,47] or augmented data [55]
to recall the old class knowledge. Network-architecture-
based methods [1,23,37,46,48,50] design incremental net-
work architectures by expanding the network capacity for
new class data or freezing partial network parameters to
keep the old class knowledge. Our method can be used to
improve different Distillation-based CIL methods.

Some prior works used unlabeled external data for class-
incremental learning. [17] proposed a confidence-based
sampling method to select unlabeled external data to com-
pute a specially designed global distillation loss. [51] ran-
domly selected unlabeled samples and used them to com-
pute KD losses for model consolidation. [24] used unla-
beled data to maximize the classifier discrepancy when in-
tegrating an ensemble of auxiliary classifiers. Our method
differs from theirs in two aspects. 1) Our method uses the
unlabeled data in a more generic way and can be applied
to improve different distillation-based methods [12, 35, 44],
while the existing methods use unlabeled data to assist their
specially-designed loss terms or components. 2) We train an
online policy to select better-unlabeled data to adapt to the
non-stationary CIL pipeline while existing methods select
unlabeled data by applying fixed (i.e., non-adaptive) rules
in all incremental phases.
Online learning observes a stream of samples and makes a
prediction for each element in the stream. There are mainly
two settings in online learning: full feedback and bandit
feedback. Full feedback means that the full reward function
is given at each stage. It can be solved by Best-Expert algo-
rithms [10]. Bandit feedback means that only the reward of
the implemented decision is revealed. If the rewards are in-
dependently drawn from a fixed and unknown distribution,
we may use, e.g., Thompson sampling [2] and UCB [4] to
solve it. If the rewards are generated in a non-stochastic ver-

sion, we can solve it by, e.g., Exp3 [3]. Online MDP is an
extension of online learning. Many studies [11, 18–21] aim
to solve it by converting it to online learning. In our case,
we formulate the CIL as an online MDP and convert it into
a classic online learning problem. The rewards in our MDP
are non-stochastic because the training and validation data
change in each phase. Therefore, we design our algorithm
based on Exp3 [3].

3. Methodology
CIL has multiple “training-testing” phases during which

the number of classes gradually increases to the maxi-
mum. In the 0-th phase, data D1:c0={D1, ...,Dc0}, in-
cluding the training samples of c0 classes, are used to
learn the model Θ0. After this phase, only a small sub-
set of D1:c0 (i.e., exemplars denoted as E1:c0={E1, ..., Ec0})
can be stored in the memory and used as replay sam-
ples in later phases. In the i-th phase, we use ci to de-
note the number of classes we have observed so far. We
get new class data Dci−1+1:ci={Dci−1+1, ...,Dci} of (ci −
ci−1) classes and load exemplars E1:ci−1

from the mem-
ory. Then, we initialize Θi with Θi−1, and train it using
T1:ci=E1:ci−1

∪Dci−1+1:ci . The model Θi will be evaluated
with a testing set Q1:ci={Q1, ...,Qci} for all classes seen
so far. Please note that in any phase of PlaceboCIL, we as-
sume we can access a free image stream, where we can load
unlabeled images and select placebos.

PlaceboCIL formulates the CIL task as an online MDP.
In each phase, we update a policy, for which we sample a
class-balanced subset from training data as the testing set,
and use the updated policy to produce a phase-specific eval-
uation function. During model training, we sample unla-
beled images, use the evaluation function to quickly judge
the image quality (good or bad placebos), and select the
good ones to compute KD losses. In this section, we intro-
duce the formulation of online MDP in Section 3.1, show
how to apply the policy to select placebos and compute KD
losses in Section 3.2, and provide an online learning algo-
rithm to update the policy in Section 3.3. The pseudocode
is given in Algorithms 1 and 2.

3.1. Online MDP Formulation for CIL

The placebo selection process in CIL should be online
inherently: training data (and classes) get updated in each
phase, so the placebo selection policy should be updated
accordingly. Thus, it is intuitive to formulate the CIL as
an online MDP [23]. In the following, we provide detailed
formulations.
Stages. Each phase in the CIL task can be viewed as a stage
in the online MDP.
States. The state should define the current situation of the
agent. In CIL, we use the model Θi as the state of the i-th
phase (i.e., stage). We use S to denote the state space.

 Placebos

Old exemplars

New data

Unlabeled data xx

Prototypes

Sample

Sample

New model
 CE loss

 KD loss

Target
data

stream

Memory

Free
image
stream

Sample

New class
 batch

Old class
 batch

 Placebo
 batch Old model

Data for CE loss

Data for KD loss
Evaluation functions

Figure 2. Our PlaceboCIL in the i-th phase. At the beginning of this phase, we build phase-specific evaluation functions {Sm(u)}ci−1
m=1.

During training, we select placebos as follows. 1) We load an unlabeled data batch U from the free image stream. 2) We compute scores
using {Sm(u)}ci−1

m=1 for all samples in U . 3) For each old class m, we select K placebos with the highest scores and add them to P . 4) We
delete used placebos from P after computing the loss. 5) When we use up the selected placebos in P , we repeat the selection steps.

Actions. We define the action as ai=(βi, γi), consisting
of the hyperparameters (βi and γi) used to create an eval-
uation function. As βi and γi vary in a continuous range,
we discretize them to define a finite action space.2 We will
elaborate on how to take an action and deploy the hyperpa-
rameters in Section 3.2.
Policy π={p(a|Θi)}a∈A is a probability distribution over
the action space A, given the current state Θi. We will elab-
orate on how to update the policy using our proposed online
learning algorithm in Section 3.3.
Environments. We take the training and testing data in
each phase as the environment. In the i-th phase, the en-
vironment is Hi=(T1:ci ,Q1:ci), where T1:ci is the train-
ing data and Q1:ci is the testing data. The environment
is time-varying because we observe different training data
(and classes) in each new phase.
Rewards. CIL aims to train a model that is efficient in rec-
ognizing all classes seen so far. Therefore, it is intuitive to
use testing accuracy as the reward in each phase. We cannot
observe any reward (i.e., testing accuracy) directly because
the testing data is not accessible during training. We solve
this by building a local testing set using a subset of training
data (see details in Section 3.3). Our objective is to max-
imize a cumulative reward, i.e., R =

∑N
i=1 rHi(Θi,ai),

where rHi
(Θi,ai) denotes the i-th phase reward. The re-

ward function rHi
changes withHi, so it is time-varying.

3.2. Placebo Selection

In the following, we introduce how to build phase-
specific evaluation functions using the policy, select high-

2Though discretization suffers the curse of dimensionality, our experi-
ments show that with a coarse grid, we already have significant improve-
ments over pre-fixed hyperparameters.

quality placebos without breaking memory constraints, and
compute KD losses with the selected placebos. The compu-
tation flow (in each phase) is illustrated in Figure 2.
Computing prototypes. Our placebo selection is based on
the distance from the placebo to the class prototype, i.e.,
the mean feature of each class [41]. First, we compute the
prototypes of all seen classes. We use exemplars to compute
the prototypes of old classes, and use new class training data
for new class prototypes, as follows,

Pro(En) =
1

|En|
∑
z∈En

FΘi
(z), Pro(Dl) =

1

|Dl|
∑
z∈Dl

FΘi
(z),

(1)
where FΘi(·) denotes the encoder (i.e., the feature extrac-
tor) of Θi. Pro(En) and Pro(Dl) denote the prototypes of
the n-th old class and the l-th new class, respectively.
Building evaluation functions. We argue that high-quality
placebos for the m-th old class should meet two require-
ments: (1) being close to the prototype of the m-th class in
the feature space because they will be used to activate the
related neurons of the m-th old class in the model; and (2)
being far from the prototypes of all the other classes in the
feature space so that they will not cause the KD issue (as
shown in Figure 1). To achieve these, we design the follow-
ing evaluation function Sm(x) for the m-th old class in the
i-th phase:

Sm(x) =− Sim (FΘi
(x),Pro(Em))

+ βi

ci−1∑
n=1
n ̸=m

Sim (FΘi
(x),Pro(En))

ci−1 − 1

+ γi

ci∑
l=ci−1+1

Sim (FΘi
(x),Pro(Dl))

ci − ci−1
,

(2)

Algorithm 1: Our PlaceboCIL in Phase i (i≥1)

Input : Old model Θi−1, training data T1:ci ,
testing data Q1:ci , learnable parameters w,
numbers of epochs M1 and M2.

Output: New model Θi, new exemplars E0:i,
learnable parameters w.

// Policy learning

1 if i=1 then
2 Initialize w = {1, . . . , 1};
3 for t in i, ..., T do
4 Randomly sample a class-balanced subset B1:ci

from T1:ci ,;
5 Create the local environment

hi = ((T1:ci) \ B1:ci ,B1:ci);
6 Set the policy π = w/||w||;
7 Sample an action at ∼ π;
8 for j in i, ..., i+ n do
9 Train Θj for M1 epochs by Algorithm 2

with inputs Θj−1, at, hi;
10 Collect the reward rhi(Θj ,at);

11 Compute the cumulative reward R(at, hi) by
Eq. 5;

12 Update w by Eq. 6;
// CIL training

13 Sample an action ai ∼ π;
14 Train Θi for M2 epochs by Algorithm 2 with inputs

Θi−1, ai,Hi = (T1:ci ,Q1:ci);
15 Select new exemplars E1:ci from T1:ci .

where x denotes an unlabeled input image, and Sim(·, ·) de-
notes cosine similarity. βi and γi are two hyperparameters
from the action ai=(βi, γi), sampled by the policy π.
Allocating mini-batch-based memory for placebos. We
need to allocate a small amount of memory to store unla-
beled images (before evaluating them). At the beginning of
the i-th phase, we allocate memory buffers U and P respec-
tively for the unlabeled image candidates and the selected
placebos. In order to not exceed the memory budget, we
randomly remove the same number, i.e., |U + P|, of sam-
ples from the training data of new classes. Our empirical
results show this “remove” does not degrade the model per-
formance on new classes.
Selecting placebos. Whenever the placebo buffer P is
empty, we load a batch of unlabeled samples U from the free
image stream, and choose K placebos for each old class to
add into P , as follows,

P := {xk}ci−1×K
k=1 = argmaxxk∈U

ci−1∑
m=1

K∑
k=1

Sm(xk). (3)

Calculating loss with placebos. After selecting placebos,

Algorithm 2: Training with placebos for action a

Input : Old model Θold, action a = {β, γ},
environment h = {T ,Q}.

Output: New model Θ, reward rh(Θ,a) (i.e., the
testing accuracy).

1 Initialize Θ with Θold;
2 Create {Sm(x)}ci−1

m=1 based on a = {β, γ} using
Eq. 2;

3 for epochs do
4 Set P = ∅;
5 while P == ∅ do
6 Sample U from the free image stream;
7 Select placebos P ⊂ U using Eq. 3;
8 for iterations do
9 Sample mini-batches p, d, and e;

10 Compute the loss L by Eq. 4 and update
Θ;

11 Update placbo buffer P := P \ p;

12 Compute the reward rh(Θ,a) on Q.

we sample a batch of new class data d⊂Dci−1+1:ci , a batch
of old class exemplars e ⊂ E1:c0 , and a batch of placebos
p⊂P . We calculate the overall loss as follows,

L = LCE(Θi;d ∪ e) + λLKD(Θi−1,Θi;p ∪ e), (4)

where LCE and LKD denote the CE loss and KD losses,
respectively. λ is a hyperparameter to balance the two
losses [35]. To control the memory usage, we delete p from
P immediately after calculating the loss. When P is empty,
we repeat the placebo selection operation.

3.3. Online Policy Learning Algorithm

A common approach to solving an online MDP is to ap-
proximate it as an online learning problem and solve it us-
ing online learning algorithms [2,3,10]. We also follow this
idea in PlaceboCIL, and our approximation follows [11],
which is theoretically proved to have the optimal regret.
Specifically, Even-Dar et al. [11] relax the Markovian as-
sumption of the MDP by decoupling the cumulative reward
function and letting it be time-dependent so that they can
solve online MDP by standard online learning algorithms.

However, we cannot directly apply the algorithms pro-
posed in [11] to our problem. It is because they assume
full feedback, i.e., the model can observe the rewards of all
actions in every learning phase (which is also why its on-
line learning problem can be solved by Best Expert algo-
rithms [10]). While in CIL, we cannot observe any reward
(i.e., the testing accuracies) because the testing data Q1:ci

are not accessible in any phase i. To address this problem,
we split the training data we have in each phase into two

Method
20 exemplars/class 10 exemplars/class 5 exemplars/class

Average Last Average Last Average Last

LwF [22] 53.19 +1.35 43.18 +3.64 45.96 +3.64 34.10 +3.64 35.41 +13.64 24.91 +13.64

w/ ours 59.08 +5.89 49.15 +5.97 53.61 +7.65 38.36 +4.26 41.55 +6.141 28.68 +3.771

iCaRL [35] 57.12 +1.35 47.49 +3.64 53.43 +3.64 41.49 +3.64 43.73 +13.64 34.33 +13.64

w/ ours 61.24 +4.12 51.47 +3.98 59.11 +5.68 46.42 +4.93 51.55 +7.821 39.35 +5.021

LUCIR [12] 63.17 +1.35 53.71 +3.64 60.50 +3.64 49.08 +3.64 51.36 +13.64 39.37 +13.64

w/ ours 65.28 +2.11 56.23 +2.52 64.79 +4.29 55.44 +6.36 62.74 +11.35 53.25 +13.88

LUCIR-AANets [25] 66.72 +1.35 55.77 +3.64 61.12 +3.64 48.83 +3.64 53.81 +13.64 42.93 +13.64

w/ ours 67.16 +0.44 59.14 +3.37 64.30 +3.18 52.92 +4.09 60.27 +6.461 48.45 +5.521

FOSTER [44] 70.62 +1.35 62.97 +3.64 62.03 +3.64 52.23 +3.64 56.80 +13.64 43.11 +13.64

w/ ours 71.97 +1.35 64.43 +1.46 65.12 +3.09 54.81 +2.48 62.78 +5.981 50.72 +7.611

Table 1. Evaluation results (%) on CIFAR-100 (N=5) using different baselines w/ and w/o our PlaceboCIL. “Average” denotes the average
accuracy over all phases. “Last” denotes the last phase (5-th phase) accuracy.

subsets: one for training and another for validation. Once
we have a validation set, we can solve our online learning
problem based on Exp3 [3,23]—a simple and effective ban-
dit algorithm. In the following, we elaborate on how we do
this data splitting in each local dataset (i.e., the entire data
we have in each training phase of CIL), compute the decou-
pled cumulative reward, and learn the policy π with Exp3.
Rebuilding local datasets. To compute reward, we sample
a class-balanced subset B1:ci from the training data T1:c1 .
B1:ci contains the same number of samples for both the old
and new classes. In this way, we rebuild the local training
and validate sets, and update the environment from the or-
acle Hi=(T1:ci ,Q1:ci) (which is unavailable in CIL) to the
local environment hi=(T1:ci \ B1:ci ,B1:ci).
Decoupled cumulative reward. We create the decoupled
cumulative reward function R based on the original cumu-
lative reward function

∑N
j=1 rHj

(Θj ,aj). In the i-th phase,
we compute R as follows,

R(ai, hi) =

i+n∑
j=i

rhi
(Θj ,ai) + constant, (5)

where the “constant” denotes the historical rewards from
the 1-st phase to the (i-1)-th phase. It doesn’t influence
policy optimization. R(ai, hi) is the long-term reward of
a time-invariant local MDP based on the local environment
hi. We use R(ai, hi) as an estimation of the final cumu-
lative reward, following [11]. Because we don’t know the
total number of phases N during training, we assume there
will be n phases in the future. Furthermore, we fix the ac-
tion ai to simplify the training process. R(ai, hi) is a func-
tion of ai and hi.
Training policy with Exp3. Exp3 [3] introduces an aux-
iliary variable w = {w(a)}a∈A. It is updated as follows.
In the 1-st phase, we initialize w as {1, . . . , 1}. In each
phase i (i≥1), we update w for T iterations. In the t-th iter-
ation, we sample an action at∼π, apply the action at to the

CIL system, and compute R(at, hi) using Eq. 5. After that,
we update w(at) in w as,

w(at)← w(at) exp(ξR(at, hi)/p(at|Θi)), (6)

where ξ is a constant, which can be regarded as the learning
rate. After updating w, we get the policy π=w/||w||. The
pseudocode is available in Algorithms 1 and 2.

4. Experiments
We evaluate our method on three CIL benchmarks and

achieve consistent improvements over multiple baseline
methods. Below we introduce datasets and implementa-
tion details, followed by results and analyses, including the
comparison to the state-of-the-art, an ablation study, and the
visualization of our placebos.
Datasets and free image streams. We use three datasets:
CIFAR-100 [16], ImageNet-100 [35], and ImageNet-
1k [36]. ImageNet-100, which contains 100 classes, is sam-
pled from ImageNet-1k. We use exactly the same classes
or orders as the related works [12, 35]. For CIFAR-100, we
use ImageNet-1k as the free image stream. For ImageNet-
100, we use a 900-class subset of ImageNet-1k, which is
the complement of ImageNet-100 in ImageNet-1k. For
ImageNet-1k, we use a 1, 000-class subset of ImageNet-
21k [8] without any overlapping class (different super-
classes from those in ImageNet-1k).
Implementation details. Following [9, 12, 25, 26], we use
a modified 32-layer ResNet for CIFAR-100 and an 18-layer
ResNet for ImageNet datasets. The number of exemplars
for each class is 20 in the default setting. The training batch
size is 128. On CIFAR-100 (ImageNet-Subset/1k), we train
it for 160 (90) epochs in each phase, and divide the learning
rate by 10 after 80 (30) and then after 120 (60) epochs. If
the baseline is POD-AANets [25], we fine-tune the model
for 20 epochs using only exemplars. We apply different
forms of distillation losses on different baselines: (1) if the

Method
CIFAR-100 ImageNet-100 ImageNet-1k

N=5 10 25 5 10 25 5 10

TPCIL [42] 65.34 63.58 – 76.27 74.81 – 64.89 62.88
GeoDL [40] 65.14 65.03 63.12 76.63 75.40 71.43 65.23 64.46
DER [48] 68.65 67.48 66.18 78.40 78.20 75.40 68.13 65.97
ELI [13] 68.78 66.62 64.72 73.54 71.82 70.32 – –

GD+ext [17] 63.17±0.47 58.71±0.39 51.79±0.42 75.67±0.51 72.08±0.61 65.13±0.56 – –
MUC-LwF [24] 59.03±0.35 53.27±0.47 49.06±0.49 72.31±0.53 68.92±0.60 62.93±0.62 – –

POD-AANets [25] 66.12±0.41 64.11±0.32 62.12±0.51 76.63±0.47 75.40±0.36 71.43±0.32 67.60±0.39 64.79±0.42

w/ PlaceboCIL (ours) 67.65±0.45 65.78±0.40 64.95±0.46 78.24±0.52 77.14±0.47 75.85±0.42 68.55±0.34 65.49±0.38

FOSTER [44] 70.62±0.58 68.43±0.45 63.83±0.62 80.21±0.67 77.63±0.73 69.27±0.50 69.32±0.47 66.07±0.61

w/ PlaceboCIL (ours) 71.97±0.49 70.31±0.59 67.02±0.65 82.03±0.49 79.52±0.60 72.79±0.45 71.02±0.39 68.82±0.54

Table 2. Average accuracy (%) across all phases. The first block shows top-performing CIL methods. The second block shows CIL
methods that use unlabeled data. The third block shows our method.

No. Setting
iCaRL LUCIR-AANets

Average Last Average Last

1 Baseline 57.12 47.49 66.72 57.77
2 PlaceboCIL 61.01 51.45 67.16 59.14

3 Overlapping 62.15 52.62 67.48 59.06
4 Non-overlapping 61.52 51.70 67.01 58.53
5 New data 57.70 47.51 66.69 57.33
6 Old data (oracle) 66.64 58.03 68.82 61.52

7 w/o Online learning 60.27 50.57 66.91 58.88
8 Offline RL 61.09 50.81 67.31 59.26

9 Higher confidence 60.43 49.36 66.97 58.12
10 Random placebos 56.27 46.64 66.23 57.22

Table 3. Ablation results (%) on CIFAR-100, N=5. (1) First
block: baselines. Row 1 shows the baselines. Row 2 shows
our method. All other settings (Rows 3-10) are based on Row 2.
(2) Second block: different free data streams. Rows 3-6 show
the ablation results for the following free data streams. (3) Third
block: different policy learning methods. Row 7 is for using fixed
evaluation functions (βi=γi=1). Row 8 uses the offline RL (the
REINFORCE algorithm) to train the selection policy. (4) Fourth
block: different placebo selection strategies. Row 9 uses unla-
beled data with higher confidence. Row 10 uses them randomly.

baselines are LwF and iCaRL, we use the softmax KL diver-
gence loss; (2) if the baselines are LUCIR and AANets, we
use the cosine embedding loss [12]; and (3) if the baseline
is POD-AANets, we use pooled outputs distillation loss [9].
For our PlaceboCIL, |U| and |P| are set as 1, 000 and 200,
respectively. All experiments of our PlaceboCIL use the
“strict budget” setting, i.e., deleting |U + P| samples from
training data to avoid exceeding the memory budget.

Results on five baselines. Table 1 shows the average
and last-phase accuracy for five baselines (i.e., LwF [22],
iCaRL [35], LUCIR [12], AANets [25], and FOSTER [44]).
From the table, we make the following observations. 1) Us-

|U| 2000 1000 500 0

Acc. (%) 61.13 61.01 58.23 57.12

Table 4. Ablation results (%) for different memory buffer sizes |U|
on CIFAR-100, N=5. The baseline is iCaRL [35].

ing our PlaceboCIL boosts the performance of the base-
lines clearly and consistently in all settings, indicating that
our method is generic and efficient. 2) When the number
of exemplars decreases, the improvement brought by our
method becomes more significant. For example, the last-
phase accuracy improvement of LUCIR increases from 2.52
to 13.88 percentage points when the number of exemplars
per class decreases from 20 to 5. This reveals that the su-
periority of our method is more obvious when the forget-
ting problem is more serious (with fewer exemplars) due
to a tighter memory budget in CIL. 3) Our PlaceboCIL can
boost the performance of all KD terms, i.e., not only for
logits-based KD [35] but also for feature-based KD [9, 12].
Comparisons to the state-of-the-art. Table 2 (Blocks
1&3) shows the results of our best model (taking Place-
boCIL as a plug-in module in the top method [44]) and
some recent top-performing methods. We can see that us-
ing our PlaceboCIL outperforms all previous methods. In-
triguingly, we find that we can surpass others more when
the number of phases is larger—where there are more seri-
ous forgetting problems. For example, when N=25, we im-
prove POD-AANets by 4.4% on the ImageNet-100, while
this number is only 1.6% when N=5 (which is an easier set-
ting with more saturated results). This reflects the encour-
aging efficiency of our method for reducing the forgetting
of old class knowledge in CIL models.
Comparisons to the CIL methods using unlabeled data.
Table 2 (Blocks 2&3) shows the results of our best model
and CIL methods using unlabeled data (GD+ext [17] and
MUC-LwF [24]). We can see that our method consis-
tently performs better than others. For another related work,

Siberian husky unicycle

C
IF

A
R

-1
00

 c
la

ss
: r

oa
d

(a) Selected placebos (b) t-SNE visualization
radio telescope

n04515003 - upright

terrier

n03290653 - entertainment

marimba home theater

upright entertainment

new data
old data
placebosC

IF
A

R
-1

00
 c

la
ss

: t
ab

le

Figure 3. (a) Selected placebos for two CIFAR-100 classes and their GradCAM activation maps. The free image stream is non-matching
ImageNet-1k. (b) The t-SNE results on CIFAR-100 (N=5). For clear visualization, we randomly pick five new classes and five old classes.
The purple, light blue, and dark blue points denote the new data, old data, and selected placebos, respectively.

DMC [51], we didn’t find the public code. So, we compare
ours with DMC using their paper’s setting: iCaRL w/ ours
achieves 62.3%, while the result of DMC is 59.1% (CIFAR-
100, 10 phases, 10 classes/phase).

Ablation study. Table 3 shows the ablation results.
1) First block. Rows 1 and 2 show the baseline and our
method, respectively.
2) Second block: different free data streams. Rows 3-6
show the ablation results for the following free data streams.
(1) “Overlapping” means including samples from the over-
lapping classes between CIFAR-100 and ImageNet. (2)
“Non-overlapping” means using only the samples of non-
overlapping classes between CIFAR-100 and ImageNet
(more realistic than “Overlapping”). (3) “New data” means
using only the current-phase new class data (i.e., without
using any free data stream) as candidates to select place-
bos. (4) “Old data” means the original old class data are
all accessible when computing KD losses (i.e., the up-
per bound of KD effect). Please note that in (1) and (2),
two classes are considered “overlapping” if their classes
or super-classes overlap. For example, “n02640242 - stur-
geon” in ImageNet-1k is regarded as an overlapping class of
the “fish” in CIFAR-100, because they overlap at the level
of super-class (i.e., “fish”). When comparing Row 4 with
Row 2, we can find that our method is robust to the change
of data streams: even if all overlapping classes are removed,
our method can still achieve the same-level performance.
Comparing Row 5 with Row 2, we can get a clear sense that
using additional unlabeled data is definitely helpful. Com-
paring Row 6 with Row 2, we see that our method achieves
comparable results to the upper bound.
3) Third block: different policy learning methods. Row
7 is for using fixed evaluation functions (βi=γi=1). Row
8 uses the offline RL (the REINFORCE algorithm [26])
to train the selection policy. Comparing Row 7 with Row
2 shows that using online learning successfully boosts the
model performance. Comparing Row 8 with Row 2, we are
happy to see that our online learning method achieves the
same-level performance as the offline RL while the training
time is much less. The training time of the baseline (with-

out learning a policy) is 2.7 hours. It becomes around 650
hours if we solve the MDP by offline RL. In contrast, using
our online method takes only 4.5 hours.
4) Fourth block: different placebo selection strategies.
Row 9 uses unlabeled data with higher confidence follow-
ing [17]. Row 10 uses them randomly following [51]. Com-
paring these results with Row 2 shows our superiority. The
“mini-batch-based memory reusing strategy” is applied in
Rows 9 and 10.
5) Different memory buffer sizes. Table 4 shows the abla-
tion results when using different buffer sizes for U . We can
observe that larger buffer sizes achieve better results. Inter-
estingly, we can also see that using a relatively small buffer
size (e.g., 500) can still improve the baseline.
Visualization results. Figure 3 (a) demonstrates the ac-
tivation maps visualized by Grad-CAM for the placebos
of two old classes on CIFAR-100 (“road” and “table”).
ImageNet-1k is the free data stream. We can see that the
selected placebos contain the parts of “road” and “table”
even though their original labels (on ImageNet-1k) are to-
tally different classes. While this is not always the case,
our method seems to find sufficiently related images to
old classes that activate the related neurons for old classes
(“road” and “table”). To illustrate that, Figure 3 (b) shows t-
SNE results for placebos, old class data (not visible during
training), and new class data. We can see that the place-
bos are located near the old class data and far away from
the new class data. This is why placebos can recall the old
knowledge without harming the new class learning.

5. Conclusions

We proposed a novel method, PlaceboCIL, which selects
high-quality placebo data from free data streams and uses
them to improve the effect of KD in CIL. We designed an
online learning method to make the selection of placebos
more adaptive in different phases and a mini-batch-based
memory-reusing strategy to control memory usage. Exten-
sive experimental results show that our method is general
and efficient.

References
[1] Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone

Calderara, Rita Cucchiara, and Babak Ehteshami Bejnordi.
Conditional channel gated networks for task-aware continual
learning. In CVPR, pages 3931–3940, 2020. 3

[2] Shipra Agrawal and Navin Goyal. Analysis of thompson
sampling for the multi-armed bandit problem. In COLT, vol-
ume 23, pages 39.1–39.26, 2012. 3, 5

[3] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E
Schapire. The nonstochastic multiarmed bandit problem.
SIAM journal on computing, 32(1):48–77, 2002. 3, 5, 6

[4] Peter Auer and Ronald Ortner. Ucb revisited: Improved re-
gret bounds for the stochastic multi-armed bandit problem.
Periodica Mathematica Hungarica, 61(1-2):55–65, 2010. 3

[5] Jihwan Bang, Heesu Kim, Youngjoon Yoo, Jung-Woo Ha,
and Jonghyun Choi. Rainbow memory: Continual learning
with a memory of diverse samples. In CVPR, pages 8218–
8227, 2021. 3

[6] Francisco M. Castro, Manuel J. Marı́n-Jiménez, Nicolás
Guil, Cordelia Schmid, and Karteek Alahari. End-to-end in-
cremental learning. In ECCV, pages 241–257, 2018. 1

[7] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Dual-
teacher class-incremental learning with data-free generative
replay. In CVPR, pages 3543–3552, 2021. 3

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 6

[9] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas
Robert, and Eduardo Valle. Podnet: Pooled outputs distil-
lation for small-tasks incremental learning. In ECCV, pages
86–102, 2020. 1, 2, 3, 6, 7

[10] Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Ex-
perts in a markov decision process. In NeurIPS, pages 401–
408, 2005. 3, 5

[11] Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. On-
line markov decision processes. Mathematics of Operations
Research, 34(3):726–736, 2009. 3, 5, 6

[12] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via
rebalancing. In CVPR, pages 831–839, 2019. 1, 2, 3, 6, 7

[13] KJ Joseph, Salman Khan, Fahad Shahbaz Khan,
Rao Muhammad Anwer, and Vineeth N Balasubrama-
nian. Energy-based latent aligner for incremental learning.
In CVPR, pages 7452–7461, 2022. 1, 3, 7

[14] Minsoo Kang, Jaeyoo Park, and Bohyung Han. Class-
incremental learning by knowledge distillation with adaptive
feature consolidation. In CVPR, pages 16071–16080, 2022.
1

[15] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. PNAS, 114(13):3521–3526, 2017. 1

[16] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009. 6

[17] Kibok Lee, Kimin Lee, Jinwoo Shin, and Honglak Lee.
Overcoming catastrophic forgetting with unlabeled data in
the wild. In ICCV, pages 312–321, 2019. 1, 2, 3, 7, 8

[18] Yingying Li, Subhro Das, and Na Li. Online optimal control
with affine constraints. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pages 8527–8537,
2021. 3

[19] Yingying Li and Na Li. Online learning for markov deci-
sion processes in nonstationary environments: A dynamic re-
gret analysis. In 2019 American Control Conference (ACC),
pages 1232–1237. IEEE, 2019. 3

[20] Yingying Li, James A Preiss, Na Li, Yiheng Lin, Adam
Wierman, and Jeff S Shamma. Online switching control with
stability and regret guarantees. In Learning for Dynamics
and Control Conference, pages 1138–1151. PMLR, 2023. 3

[21] Yingying Li, Aoxiao Zhong, Guannan Qu, and Na Li. On-
line markov decision processes with time-varying transition
probabilities and rewards. In ICML workshop on Real-world
Sequential Decision Making, 2019. 3

[22] Zhizhong Li and Derek Hoiem. Learning without forgetting.
In ECCV, pages 614–629, 2016. 3, 6, 7

[23] Yaoyao Liu, Yingying Li, Bernt Schiele, and Qianru Sun.
Online hyperparameter optimization for class-incremental
learning. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, pages 8906–8913, 2023. 1, 3, 6

[24] Yu Liu, Sarah Parisot, Gregory Slabaugh, Xu Jia, Ales
Leonardis, and Tinne Tuytelaars. More classifiers, less for-
getting: A generic multi-classifier paradigm for incremental
learning. In ECCV, pages 699–716, 2020. 1, 3, 7

[25] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive ag-
gregation networks for class-incremental learning. In CVPR,
pages 2544–2553, 2021. 1, 2, 6, 7

[26] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Rmm: Rein-
forced memory management for class-incremental learning.
In NeurIPS, pages 3478–3490, 2021. 6, 8

[27] Yaoyao Liu, Bernt Schiele, Andrea Vedaldi, and Christian
Rupprecht. Continual detection transformer for incremental
object detection. In CVPR, pages 23799–23808, 2023. 1

[28] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and
Qianru Sun. Mnemonics training: Multi-class incremental
learning without forgetting. In CVPR, pages 12245–12254,
2020. 1, 3

[29] Zilin Luo, Yaoyao Liu, Bernt Schiele, and Qianru
Sun. Class-incremental exemplar compression for class-
incremental learning. In CVPR, pages 11371–11380, 2023.
1, 3

[30] Michael McCloskey and Neal J Cohen. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In Psychology of Learning and Motivation, vol-
ume 24, pages 109–165. Elsevier, 1989. 1

[31] K. McRae and P. Hetherington. Catastrophic interference is
eliminated in pre-trained networks. In CogSci, 1993. 1

[32] Sudhanshu Mittal, Silvio Galesso, and Thomas Brox. Essen-
tials for class incremental learning. In CVPR, pages 3513–
3522, 2021. 1

[33] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania.
Gdumb: A simple approach that questions our progress in
continual learning. In ECCV, pages 524–540, 2020. 3

[34] R. Ratcliff. Connectionist models of recognition memory:
Constraints imposed by learning and forgetting functions.
Psychological Review, 97:285–308, 1990. 1

[35] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. iCaRL: Incremental classi-
fier and representation learning. In CVPR, pages 5533–5542,
2017. 1, 2, 3, 5, 6, 7

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211–252, 2015. 6

[37] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv, 1606.04671, 2016. 3

[38] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In CVPR, pages 618–626, 2017.
2

[39] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.
Continual learning with deep generative replay. In NeurIPS,
pages 2990–2999, 2017. 3

[40] Christian Simon, Piotr Koniusz, and Mehrtash Harandi. On
learning the geodesic path for incremental learning. In
CVPR, pages 1591–1600, 2021. 3, 7

[41] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. In NeurIPS, pages 4077–
4087, 2017. 4

[42] Xiaoyu Tao, Xinyuan Chang, Xiaopeng Hong, Xing Wei,
and Yihong Gong. Topology-preserving class-incremental
learning. In ECCV, pages 254–270, 2020. 3, 7

[43] Fu-Yun Wang, Da-Wei Zhou, Liu Liu, Yatao Bian, Han-Jia
Ye, De-Chuan Zhan, and Peilin Zhao. 3ef: Class-incremental
learning via efficient energy-based expansion and fusion. In
ICLR, 2023. 1

[44] Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan
Zhan. Foster: Feature boosting and compression for class-
incremental learning. In ECCV, 2022. 2, 3, 6, 7

[45] Chenshen Wu, Luis Herranz, Xialei Liu, Joost Van De Wei-
jer, Bogdan Raducanu, et al. Memory replay gans: Learn-
ing to generate new categories without forgetting. NeurIPS,
2018. 3

[46] Ju Xu and Zhanxing Zhu. Reinforced continual learning. In
NeurIPS, pages 899–908, 2018. 3

[47] Shipeng Yan, Lanqing Hong, Hang Xu, Jianhua Han, Tinne
Tuytelaars, Zhenguo Li, and Xuming He. Generative neg-
ative text replay for continual vision-language pretraining.
In Shai Avidan, Gabriel J. Brostow, Moustapha Cissé, Gio-
vanni Maria Farinella, and Tal Hassner, editors, ECCV, pages
22–38, 2022. 3

[48] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynam-
ically expandable representation for class incremental learn-
ing. In CVPR, pages 3014–3023, 2021. 3, 7

[49] Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz,
Kai Wang, Yongmei Cheng, Shangling Jui, and Joost van de

Weijer. Semantic drift compensation for class-incremental
learning. In CVPR, pages 6982–6991, 2020. 3

[50] Chi Zhang, Nan Song, Guosheng Lin, Yun Zheng, Pan Pan,
and Yinghui Xu. Few-shot incremental learning with con-
tinually evolved classifiers. In CVPR, pages 12455–12464,
2021. 3

[51] Junting Zhang, Jie Zhang, Shalini Ghosh, Dawei Li, Serafet-
tin Tasci, Larry Heck, Heming Zhang, and C-C Jay Kuo.
Class-incremental learning via deep model consolidation. In
WACV, pages 1131–1140, 2020. 2, 3, 8

[52] Yixiao Zhang, Xinyi Li, Huimiao Chen, Alan L. Yuille,
Yaoyao Liu, and Zongwei Zhou. Continual learning for ab-
dominal multi-organ and tumor segmentation. In MICCAI,
volume 14221 of Lecture Notes in Computer Science, pages
35–45, 2023. 1

[53] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-
Tao Xia. Maintaining discrimination and fairness in class
incremental learning. In CVPR, pages 13208–13217, 2020.
1

[54] Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan
Zhan. A model or 603 exemplars: Towards memory-efficient
class-incremental learning. In ICLR, 2023. 1

[55] Fei Zhu, Zhen Cheng, Xu-Yao Zhang, and Cheng-lin Liu.
Class-incremental learning via dual augmentation. NeurIPS,
pages 14306–14318, 2021. 1, 3

