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Abstract

This document presents supplementary material for our
main submission. In Section 1 we provide additional de-
tails for our newly introduced Binocular Photometric Stereo
LUCES-ST dataset. Section 2 provides some additional de-
tails about the learned BRDF renderer.

1. LUCES-Stereo

First, we note that we only reused 7 of the original
LUCES [3] objects and their CT scanned GT meshes and
all of the stereo capture data are new. We chose a variety
of materials: Bell is bronze, Bunny is shiny plastic, Cup
is aluminium, Hippo is plastic, Owl is ceramic, Queen is
plaster and Squirrel is porcelain. In fact, the stereo capture
device only contains 15 lights as the data acquisition speed
is very important in an industrial inspection setting. This
sparse lighting setting makes the photometric stereo prob-
lem highly challenging adding to the value of our dataset.
Note that as the 2 stereo images per light are captured simul-
taneously, the effective light directions for each pixel differ
for the 2 views (due to parallax) in contrast to turntable se-
tups like DiLiGenT-MV. This makes the application of un-
calibrated PS methods (such as [1]) that rely on the lighting
vectors being the same at each less practicable. Indeed, cal-
ibrated PS SOTA normal estimation on these objects (us-
ing [3], see Table 1) achieves a non negligible error (i.e.
mean 10.5o). We hope that our PS data will be useful for
future research on sparse PS aiming to minimise this error.

Similarly to competing datasets (original LUCES [3],
DiLiGenT [2]) the camera intrinsics and baseline were com-
puted using a the standard checkerboard calibration tar-
get procedure and the lighting calibration parameters (us-
ing the near lighting model of [5] that includes position,
brightness, principal direction and attenuation factor as ex-
plained in Section 3 of the main paper) using a diffuse cal-

ibration target1. We note that the target was captured in 5
distances of 22, 24, 25, 29, 30 cm, thus providing a total
of 5x2x15=150 calibration images. The lighting model pa-
rameters were fitted with differentiable rendering obtaining
a final re-rendering error of ≈ 0.005, thus the expected ac-
curacy of the light calibration should be around 0.5%. We
note that despite the fact that the images of the stereo pair
are captured simultaneously, the effective brightness of the
LEDs are not identical to both views due to different camera
sensitivity (which is also channel dependent). This makes
uncalibrated PS especially challenging as both light posi-
tions and orientations (from the cameras point of view) and
brightness different between respective stereo pair cameras.

The ground truth meshes are also aligned with Mesh-
lab2 and thus ground truth normals and depth are rendered
(with Blender3) for each view. In addition, we note that
segmentation masks were manually edited to exclude some
points that the ’GT’ may be unreliable such as the wheels
at the bottom of Bunny. In addition, for the making a fair
evaluation of stereo methods, the segmentation masks were
further cropped to only include points on the field of views
of both cameras (but not necessarily co-visible due to self
occlusions).
Synthetic LUCES-ST. To further investigate synthetic to
real gap, we also rendered all 7 objects with Blender using
the same 15 stereo lights setup at the real one and with rea-
sonable material guesses. This is shown in Figure 1 along
with the results of the normals + rendering variation. Note
however that the poses are not identical to the real data.

2. BRDF Renderer

This section provides additional details about the learnt
BRDF renderer. First of all, we note that considering RGB
images has very little value compared to grayscale ones (de-

1https://www.edmundoptics.co.uk/f/white-balance-reflectance-
targets/13169/

2https://www.meshlab.net/
3https:https://www.blender.org/

https://www.edmundoptics.co.uk/f/white-balance-reflectance-targets/13169/
https://www.edmundoptics.co.uk/f/white-balance-reflectance-targets/13169/
 https://www.meshlab.net/
https:https://www.blender.org/


Object Bell Bunny Cup Hippo Owl Queen Squirrel Average
View 1 angular error (degrees) 15.12 6.08 13.80 5.88 10.75 9.65 13.76 10.21
View 2 angular error (degrees) 15.16 5.71 15.98 7.07 11.94 9.21 13.60 10.85

Table 1. Evaluation of the accuracy of the normals predicted by [3] on images of LUCES-stereo dataset. Not surprisingly, this is not
negligible as there are only 15 lights available and the object’s geometry is challenging (causing shadows, self reflections etc). The normal
error maps are shown in Figure 5 of the main paper.
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Figure 1. This figure shows the qualitative results of our method (normals+intenisty loss variation) on LUCES-ST-synthetic dataset. This
is a synthetic counterpart to Figure 5 of the main text. The first three rows show the cropped images and corresponding error images
of normals estimated from PX-Net [3] and the ground truth shape. The final two rows show the shape predicted by our method and
corresponding error map (from ground truth to reconstruction). Similarly to Figures 4 and 5 of the main text, any errors larger than 1.5mm
are clamped to a dark red color. In contrast to real data results, out method performs relatively well on all objects (performance drop on
metallic objects such as Bell and Cup is less significant than in the real data) with the challenging geometry regions (around occlusion
boundaries) accumulating most of the error.

spite the added computation and memory overhead), espe-
cially since RGB cameras usually have Bayer pattern filters
and the RGB color are recovered using demosaicing, we
which we optimised to mostly preserve brigthness and not
‘true’ color. Therefore, we follow standard RGB to gray
conversion4 on input images, and optimise our RGB ren-
derer using scalar albedos and intenisty rendering.
BRDF parameterisation. Our aim is to learn a single
BRDF model (assuming uniform material for the whole ob-
ject), following the principles describe in the MERL real

4https://docs.opencv.org/3.1.0/de/d25/imgproc color conversions.html

material database [4]. First, we note that in the case of
normal, viewing and lighting vectors having relative angles
> 90o, the reflected light is always 0, therefore any real
rendering should include a sign(n · l)sign(n · v)sign(v · l)
(sign is a binary flag 0 for negatives, 1 for positives and
was ommited from equation in Line 396 of main text for
clarity). In addition, we note that the BRDF is only a func-
tion of the relative angles of these vectors, so they can all
be rotated such as n = [0, 0, 1] (by rotating around the
n × [0, 0, 1] axis with angle arccos(n · [0, 0, 1])). Thus
BRDF(n, l,v) := BRDF(ln,vn) with ln,vn the new ro-
tated vectors. In addition, as most of the specular lobe is

https://docs.opencv.org/3.1.0/de/d25/imgproc_color_conversions.html
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Figure 2. Rendering visualisation for all LUCES-ST objects. From top to bottom, rows include ground truth first image of first camera,
respective rendered image, rendering error (with dark red corresponding to 0.25), ambient occlusion (number of shadows/number of
images) and recovered BRDF. We note that the square of the ambient occlusion is used to weigh the rendering loss, hence rendering error
in these regions does not really affect the training procedure. We also note that the BRDF is visualised excluding the (n · l) component
(hence the values around the edges of the sphere are meaningless). Moreover, this BRDF rendering corresponds to v = [0, 0, 1] (i.e.
‘orthographic viewing’) and l = [0,

√
2/2,

√
2/2] and the colormap is chosen with green corresponding the 1 and dark red to > 2.

around the half vector h = ln+vn

|ln+vn| , [4] recommends pa-
rameterising h, as well as the difference vector d between
h and ln. In fact, d is computed by rotating both h and ln
such as h is aligned with [0, 0, 1]. Thus the 4 angles defin-
ing the BRDF can now be computed as (using superscripts
to denote x, y, z components of 3D vectors):

• θh = arccos(hz) ∈ [0, π/2].

• ϕh = atan2(hy, hx) ∈ [−π, π].

• θd = arccos(dz) ∈ [0, π/2]

• ϕd = atan2(dy, dx) ∈ [−π, π]

In addition, any real BRDF must follow the Helmholtz
reciprocity constraint which enforces symmetry between ln
and vn vectors; in the 4 angle parameterisation that trans-
lates to periodicty wrt to ϕd with period π (instead of 2π),

therefore from a learning perspective ϕd ∈ [0, π] is suffi-
cient. Moreover, since we aim to learn these kind of BRDFs
from limited image data, it is preferred to only only consider
isotropic materials (such as the 100 ones in [4]) to minimise
the overfitting chances. Thus, this corresponds to ignoring
ϕh. Finally, to simplify the learning procedure, we explic-
itly factor out the the incident light component (n · l) and
thus learn BRDF := (n · lm)MLP(θh, θd, ϕd) (in fact de-
pending on the literature sources, the BRDF is usually de-
fined as the remaining component after (n · l) is factored
out).

For the MLP component, we use three fully connected
layers containing 16 units each with relu activation followed
by one fully connected with a single value output and ex-
ponential activation function. That forces the values to be
always non-zero and encourages them to be around 1 which



corresponds to Lambertian reflectace5 and it is a reasonable
mean value.

Visualisation of the renderings and recovered BRDFs for
all LUCES-ST objects are shown in Figure 2. It is ob-
served that for the metallic objects (Bell, Cup) very narrow
specular lobes are recovered; specular dielectric materials
(Bunny, Hippo and Squirrel) have less peaky specular lobes
and for mostly diffuse objects (Owl,Queen) a mostly diffuse
BRDF is recovered.
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