Supplementary Materials

1. Implementation details

For implementing PlantPlotGAN and the other two GAN
networks (i.e., DCGAN and WGAN), we utilized the Ten-
sorFlow library, setting the Adam optimizer with the learn-
ing rate to 2e-4, 51 = 0.5, and 2 = 0.99. The layered
architecture for each model is the following:

The careful reader will note that DCGAN and PlantPlot-
GAN architectures are equal, which demonstrates the im-
portance of using a second discriminator to achieve the mul-
tispectral evaluation. On the other hand, WGAN has a more
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complex architecture, but it didn’t result in improved accu-
racy.

The PlantPlotGAN model begins with a dense layer
that takes random noise as input and produces a high-
dimensional output. This output is then passed through a
LeakyReLU activation function, which introduces a small
amount of non-linearity to prevent the "dying ReLU” prob-
lem. The subsequent reshaped layer rearranges the output
into a 4D tensor, preparing it for the transposed convolu-
tional layers. Transposed convolutional layers, also known
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Figure 1. Base architecture for implementing the DCGAN model.
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Figure 2. Base architecture for implementing the PlantPlotGAN

model.
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Figure 3. Base architecture for implementing the WGAN model.

as deconvolutional layers, are used for upsampling the data
and increasing its spatial dimensions. The first transposed
convolutional layer applies 128 filters with a kernel size of
4x4 and a stride of 2. Another LeakyReLLU activation fol-
lows to introduce non-linearity. With the same specifica-
tions, the second transposed convolutional layer further in-
creases the spatial dimensions. Another LeakyReLU acti-
vation is applied. Finally, a convolutional layer with a num-
ber of filters equal to the desired number of output chan-
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Figure 4. Observed loss function for each GAN selected for eval-
uation.

nels (e.g., multispectral channels) and a kernel size of 4x4
is added. The activation function used here is tanh, which
scales the output values between -1 and 1. This layer gener-
ates the final synthetic image output. Overall, the layers in
the generator progressively transform the input noise into a
high-dimensional tensor representing a synthetic image.

At the last layer of each model, there is a Conv2D layer
of shape (128, 128, 5) just for generating the multispectral
imagery, which generally has 5 channels.

Due to size limitations, we could not attach
the trained models with this supplementary mate-
rial. However, our work’s code and trained mod-
els are available at the following GitHub repository:
https://github.com/felipealencar/plant-disease-prediction.

2. Observing the loss functions of the genera-
tors

Another complementary experiment was observing each
loss function during the training process. Surprisingly,
PlantPlotGAN’s loss function achieved a stable increasing
learning, similar to DCGAN. However, its associated learn-
ing process starts in a shape that resembles the WGAN loss
function initially, but with improved metrics.

Conversely, although WGAN utilizes a distance-based
loss function as PlantPlotGAN, it still did not achieve suit-
able convergence. As discussed in the paper, the reason
for that is the spectral regularizer integrated into PlantPlot-
GAN.
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