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Supplemental Material

Appendix: Overview

In Section A, we provide details on the architecture design
and training setups. In Section B, we provide more experi-
ments and visual results to demonstrate the effectiveness of
Hierarchical Diffusion Autoencoders.

A. Appendix: Architectures

Our Hierarchical Diffusion Autoencoders adopts the same
diffusion-based decoder architecture with Diffusion Autoen-
coders [7] 1. The network architectures of Resblocks in the
diffusion U-net and semantic encoder are shown in Fig. 1.
Following Diffusion Autoencoders, the timestep embeddings
and semantic codes are fed into the diffusion-based decoder
as conditions with AdaGN layers. For the fairness of the
experiments, we try to keep most of the hyperparameters
consistent with Diffusion Autoencoders [7].

The network architecture, hyperparameters, and train-
ing parameters of Hierarchical Diffusion Autoencoders are
shown in Tab. 1.
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Figure 1. Architecture overview of Hierarchical Diffusion Au-
toencoders.

1https://github.com/phizaz/diffae

Figure 2. The visualization of the dilated binary masks gener-
ated from the segmentation maps of the eyes. We highlight the
area to be edited, and the remaining non-highlighted areas should
be consistent before and after editing in our image manipulation
with high fidelity task.

B. Appendix: Experiments
B.1. Evaluating the Fidelity of Image Manipulation

An important evaluation criterion for image manipula-
tion is the fidelity of image manipulation, i.e., how well
the manipulated images preserve the details of the original
images.

We conduct the experiments on the face datasets CelebA-
HQ [1]. Given an image I0 and an attribute a to manipulate,
we first extract a binary mask Iabin to indicate the rough re-
gions related to the attribute, by dilating the segmentation
map of the attribute. Iabin highlights the area to be manip-
ulated (Iabin = 1 in this area), and 1 − Iabin highlights the
area that should be consistent before and after editing, as
shown in Fig. 5. Then we apply our Hierarchical Diffusion
Autoencoders to manipulate the original image I0 with the
specific attribute a to get the manipulated image Iam. Finally,
we can compute the LPIPS [17] and MSE metrics between
I0∗(1−Iabin) and Iam∗(1−Iabin). We calculated the average
value of MSE and LPIPS from α = −0.5 to α = 0.5 (α is
the coefficient of editing direction, which controls the degree
of editing) and Tab. 2 reports the results of DAE, HDAE(U)
and HDAE(U) with disentangled attribute manipulation. The
results demonstrate that our HDAE(U) preserves the details
better than HDAE, and the disentangled manipulation with
truncated features achieves the best performance in terms of

1

https://github.com/phizaz/diffae


Hyperparameter DAE (FFHQ 128) DAE(2560) (FFHQ 128) DAE(U) (FFHQ 128) HDAE(E) (FFHQ 128) HDAE(U) (FFHQ 128)

Batch size 128 128 128 128 128
Base channels 128 128 128 128 128
Channel multipliers [1,1,2,3,4] [1,1,2,3,4] [1,1,2,3,4] [1,1,2,3,4] [1,1,2,3,4]
Images trained 130M 130M 130M 130M 130M
Encoder base ch 128 128 128 128 128
Encoder ch. mult. [1,1,2,3,4,4] [1,1,2,3,4,4] [1,1,2,3,4,4] [1,1,2,3,4,4] [1,1,2,3,4,4]
Decoder base ch - - 128 - 128
Decoder ch. mult. - - [1,1,2,3,4,4] - [1,1,2,3,4,4]
Attention resolution [16] [16] [16] [16] [16]
Latent code dim 512 2560 512 2560 2560
β scheduler Linear Linear Linear Linear Linear
Learning rate 1e-4
Optimizer Adam (no weight decay)
Training T 1000
Diffusion loss MSE with noise prediction ϵ⃗
Diffusion var. Not important for DDIM

Parameters 122.59M 190.6M 160.94M 154.62M 189.15M

Table 1. Network architecture and training hyperparameters of hierarchical diffusion autoencoder.

Metric LPIPS(↓)

Attribute eyeglasses mouth slightly open big lips big nose mustache bags under eyes arched eyebrows gray hair

DAE [7] 0.23267 0.18339 0.10974 0.15190 0.18660 0.20546 0.18365 0.31655

HDAE(U) 0.22098 0.16874 0.10437 0.13695 0.18223 0.19380 0.17504 0.28918

HDAE(U) Disentangled 0.18237 0.13382 0.07329 0.10872 0.14892 0.12983 0.13568 0.22260

Metric MSE(↓)

Attribute eyeglasses mouth slightly open big lips big nose mustache bags under eyes arched eyebrows gray hair

DAE [7] 0.01105 0.00906 0.00341 0.00388 0.01060 0.00952 0.00588 0.08564

HDAE(U) 0.01011 0.00804 0.00262 0.00304 0.00823 0.00843 0.00548 0.07369

HDAE(U) Disentangled 0.00771 0.00593 0.00126 0.00165 0.00517 0.00595 0.00389 0.04739

Table 2. Evaluation of image manipulation fidelity. “HDAE(U) Disentangled” means disentangled image manipulation with truncated
feature using HDAE(U).

fidelity.

B.2. Image Reconstruction

We show the images reconstructed from DAE [7] and
HDAE(U) with their corresponding xT as well as random
xT for comparison. We also show the results from some
state-of-the-art GAN-based methods, such as HFGI [14] and
PSP [8]. As shown in Fig. 6, our HDAE can achieve better
reconstruction results than DAE with random xT , indicating
that our HDAE encodes richer and more comprehensive
representations in the hierarchical semantic latent code.
Ablation study on number of blocks in UNet. We change
the number of blocks to obtain a larger HDAE-L model
(304M params) and a smaller HDAE-S model (54M params).
We refer to the original HDAE in main paper as HDAE-B
(190M params). We compare those models trained for 340M
steps on the test set of FFHQ. The MSE of HDAE-S, HDAE-
B and HDAE-L are 0.007714, 0.004847 and 0.004262, re-

spectively. The LPIPS of HDAE-S, HDAE-B and HDAE-L
are 0.09718, 0.06736 and 0.06235, respectively. Results
indicate the potential to scale up our model.

B.3. Image Manipulation

Detail-preserving image manipulation. Fig. 7 shows the
visual results of image manipulation on real images with
GAN inversion approach HFGI [14], E4E [12], our baseline
DAE [7], and our proposed model HDAE(U). Fig. 8 further
compares the visual results of image manipulation on real
images between DAE and HDAE(U). The qualitative results
demonstrate that our HDAE(U) is extremely good at pre-
serving details for image editing, compared with previous
approaches.
Disentangled image manipulation with truncated fea-
tures. We show the qualitative results of image manipula-
tion with different α (the weight of classifier direction) and
k (k channels are preserved after truncation) in Fig. 11. It



(a) Attribute Dependency (b) Identity Embedding Similarity

Figure 3. (a) Attribute dependency (AD) vs. the degree of target attribute manipulation. Lower AD indicates better disentanglement. (b)
Identity embedding similarity between edited and original faces vs. the degree of target attribute manipulation. Higher similarity indicates
better identity preservation.

Input w/ TF
HDAE DAE

w/ TF Input w/ TF
HDAE DAE

w/ TF
DAE

Input w/ TF
HDAE

w/ TF Input w/ TF
HDAE DAE

w/ TF

old ArchedEyebrows old ArchedEyebrows

scale
++

Figure 4. Disentangled attribute manipulation results with increasing degrees of attribute manipulation. The images in the same row
are generated with the same degree of manipulation. The degree of manipulation in the second row is higher than that in the first row.

HDAE(U) SPADE CLADE GroupDNet Pix2PixHD

FID 23.37 29.2 30.6 25.9 38.5

Table 3. Image translation results of HDAE(U), SPADE [5],
CLADE [11], GroupDNet [18], and Pix2PixHD [13] on the
CelebAMask-HQ [3] test set.

is shown that α controls the strength of editing and k con-
trols the degree of disentanglement. Higher α leads to more
intense editing, and lower k leads to more disentangled ma-
nipulation. We provide more qualitative results of image
manipulation with truncated features in Fig. 9, demonstrat-
ing the effectiveness of our approach for disentangled image
manipulation. As shown in Fig. 4 and Fig. 11, we also con-
trol the degree of attribute manipulation to compare DAE w/
TF and HDAE w/ TF.
Identity preservation for face editing. We use ArcFace
to calculate the cosine similarity between the feature em-
beddings of 5000 pairs of original images and manipulated
images. With the same degree of target attribute manipula-

tion (normalized logit change used in [15]), HDAE w/ TF
best preserves the identity, followed by HDAE, while DAE
preserves the worst, as shown in Fig. 3 (b).
Disentanglement Metric: Attribute Dependency. At-
tribute dependency is a disentanglement metric proposed
by [15] which measures the degree to which manipulating
an attribute introduces changes in other attributes. Follow-
ing [15], we measure the mean-AD and max-AD, as shown
in Fig. 3 (a). HDAE w/ TF gets the lowest AD, followed by
HDAE, while DAE gets the highest.

B.4. Interpreting the Hierarchical Latent Space

Style mixing. We show more qualitative results of style
mixing in Fig. 10.
Image interpolation with different latent codes. We show
the qualitative results of image interpolation with different
latent codes in Fig. 13. It shows a clear hierarchy of the latent
space. The low-level features control the spatial details such
as background, color, and lighting, and high-level features
control the global and abstract semantic attributes related
to image structure such as pose, gender, face shape, and



(a) Face
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Figure 5. Unconditional samples (uncurated) from our HDAE-
M and latent DDIM trained on FFHQ-128 and LSUN horse-
128.

eyeglasses.
Visualization of empirical cumulative distribution func-
tion and values of the 5 x 512-dimensional normalized
classifier weights. We show more examples of empirical
cumulative distribution function and values of the 5 x 512-
dimensional normalized classifier weights in Fig. 14.
Connections between the hierarchical latent space and
truncation-based approach. The hierarchical latent space
and truncation-based approach are orthogonal approaches
to improve image manipulation from different perspectives.
The feature hierarchy improves image manipulation by pro-
viding a comprehensive and semantically meaningful la-
tent space. The richness of the latent space ensures detail
preservation for image manipulation. On the other hand, the
truncation-based approach empowers disentangled image
manipulation. Therefore, HDAE(U) with truncated features

Dataset Model FID(↓)
T=10 T=20 T=50 T=100

CelebA 64 DAE∗ 12.92 10.18 7.05 5.30
HDAE-M(E) 13.19 9.86 6.63 5.13

FFHQ 128 DAE∗ 21.24 17.15 13.08 10.93
HDAE-M(E) 20.73 17.36 14.24 12.66

Horse 128 DAE∗ 12.60 10.23 8.57 8.02
HDAE-M(U) 11.29 9.79 8.39 8.22

Table 4. Unconditional image generation results of DAE [7] and
HDAE-M(E) on the CelebA, FFHQ and LSUN Horse. ∗ denotes
results produced by our re-implementation.

shows the best detail-preserving and disentangled image
manipulation results.

B.5. Details of human perceptual experiments.

We collect votes from 15 participants for our human per-
ceptual experiments. Each participant answers 35 three-
choice questions for image manipulation experiment, 35
four-choice questions for disentangled manipulation experi-
ment, and 15 two-choice questions for image reconstruction
experiment. We show some examples of our human percep-
tual experiments in Fig. 15.

B.6. Semantic Image Synthesis

We use HDAE(U) to transform semantic layouts into re-
alistic images. To fully leverage the semantic information,
the semantic label map is injected into the semantic encoder
pretrained for semantic layouts to obtain semantic vectors
zs. The stochastic code xT is a randomly sampled Gaussian
noise map. Our HDAE(U) is trained on the CelebAMask-
HQ [3] dataset with image sizes of 256 × 256. Tab. 3 re-
ports the results of HDAE(U), SPADE [5], CLADE [11],
GroupDNet [18], and Pix2PixHD [13]. As shown in Fig. 12,
HDAE(U) can produce a superior performance on fidelity
and learned correspondence without any special design for
this task. By sampling different Gaussian noise maps xT ,
the model can produce diverse high-quality images with the
same layout.

B.7. Unconditional Image Generation

Methods. We conduct the unconditional image genera-
tion experiments on CelebA [4], FFHQ [2], and LSUN
Horse [16]. Since the dimension of our hierarchical semantic
vectors is higher than the dimension of the semantic vector
of DAE, it is more difficult for HDAE than DAE to predict
the latent semantic vectors with a latent DDIM. So we use a
linear layer to map our hierarchical semantic vectors from
HDAE encoder into a 512-dimensional vector. And we use
this 512-dimensional vector as the condition of the diffusion
U-Net network. We denote the model as HDAE-M. After



tuning (or training from scratch) our HDAE-M few epochs,
we train a latent DDIM to generate the semantic latent code
from random noise.
Experiments. We compute FID scores between 50, 000
randomly sampled real images from the dataset and our
50, 000 generated images. Tab. 4 reports our experiments
on CelebA with image size 64 × 64, FFHQ of image size
128× 128, and LSUN Horse of image size 128× 128. Our
approach performs better than DAE on two out of three
datasets. We show more qualitative results of unconditional
image generation in Fig. 4.

B.8. Limitations

HDAE models are trained on same-category images such
as face images, while future work can explore complex
scenes. Moreover, it is worth exploring whether HDAE can
be generalized to pretrained text-to-image diffusion models
such as Stable Diffusion [10].
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Figure 6. Quantitative results of face and cat image reconstruction between HFGI [14], PSP [8], E4E [12], PTI [9], DAE [7] and
HDAE(U).
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Figure 7. Comparisons on real image manipulation between HFGI [14], E4E [12], PTI [9], StyleCLIP [6], DAE [7] and HDAE(U).
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Figure 8. Comparisons on real image manipulation between DAE [7] and HDAE(U).
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Figure 9. Disentangled attribute manipulation results.
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Figure 10. Style mixing results with hierarchical latent space.
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Figure 11. Disentangled attribute manipulation results with different α and k. As shown in the Figure, we manipulate the attribute of
beard. And we can see that glasses will appear, as k increases,
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Figure 12. Semantic image synthesis results between HDAE(U) and PSP [8]
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Figure 13. Image interpolation results with different latent codes.
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Figure 14. More examples of the values of the 5× 512-dimensional n̂, visualized by levels and the empirical cumulative distribution
function of the element values in the normalized classifier weights n̂.



(a) Image Reconstruction (b) Image Manipulation (c) Disentangled Image Manipulation

Figure 15. User study examples of image reconstruction, image manipulation and disentangled image manipulation.
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