1. Supplementary Materials

1.1. Proofs

Here we include the proof for the C1 and C2 conditions covered in Section 3. Recall that μ_i represents a probability measure, μ_i^{θ} represents $g_{\theta \#} \mu_i$, where $g_{\theta} : \mathbb{R}^d \to \mathbb{R}$ with some regularity constraints, and that we define the cumulative distribution transform (CDT) of μ_i^{θ} as

$$\phi_{\theta}(\mu_i) \coloneqq (T_i^{\theta} - id),$$

where T_i^{θ} is the Monge map/coupling, and *id* denotes the identity function. For a fixed θ , here we prove that $\phi^{\theta}(\mu_i)$ satisfies the following conditions:

C1. The weighted ℓ_2 -norm of the embedded slice, $\phi_{\theta}(\mu_i)$, satisfies:

$$\|\phi_{\theta}(\mu_{i})\|_{\mu_{0}^{\theta},2} = \left(\int_{\mathbb{R}} \|\phi_{\theta}(\mu_{i}(t))\|_{2}^{2} d\mu_{0}^{\theta}(t)\right)^{\frac{1}{2}} = \mathcal{W}_{2}(\mu_{i}^{\theta},\mu_{0}^{\theta}),$$

Proof. We start by writing the squared distance:

$$\begin{split} \|\phi_{\theta}(\mu_{i})\|_{\mu_{0}^{\theta},2}^{2} &= \int_{\mathbb{R}} \|\phi_{\theta}(\mu_{i}(t))\|_{2}^{2} d\mu_{0}^{\theta}(t) \\ &= \int_{\mathbb{R}} \|T_{i}^{\theta}(t) - t\|_{2}^{2} d\mu_{0}^{\theta}(t) \\ &= \int_{\mathbb{R}} \|(F_{\mu_{i}^{\theta}}^{-1} \circ F_{\mu_{0}^{\theta}})(t) - t\|_{2}^{2} d\mu_{0}^{\theta}(t) \\ &= \int_{0}^{1} \|F_{\mu_{i}^{\theta}}^{-1}(\tau) - F_{\mu_{0}^{\theta}}^{-1}(\tau)\|_{2}^{2} d\tau \\ &= \mathcal{W}_{2}^{2}(\mu_{i}^{\theta}, \mu_{0}^{\theta}) \end{split}$$

where we used the definition of the one-dimensional Monge map, $T_i^{\theta} = F_{\mu_i^{\theta}}^{-1} \circ F_{\mu_0^{\theta}}$, and the change of variable $\tau = F_{\mu_0^{\theta}}(t)$. The corollary, $\|\phi_{\theta}(\mu_0)\|_{\mu_0^{\theta},2} = 0$, is trivial as $\mathcal{W}_2^2(\mu_0^{\theta}, \mu_0^{\theta}) = 0$.

C2. The weighted ℓ_2 distance satisfies:

$$\|\phi_{\theta}(\mu_i) - \phi_{\theta}(\mu_j)\|_{\mu_0^{\theta}, 2} = \mathcal{W}_2(\mu_i^{\theta}, \mu_j^{\theta}).$$
(1)

Proof. Similar to the previous proof:

$$\begin{split} \|\phi_{\theta}(\mu_{i}) - \phi_{\theta}(\mu_{j})\|_{\mu_{0}^{\theta},2}^{2} &= \int_{\mathbb{R}} \|\phi_{\theta}(\mu_{i}(t)) - \phi_{\theta}(\mu_{j}(t))\|_{2}^{2} d\mu_{0}^{\theta}(t) \\ &= \int_{\mathbb{R}} \|T_{i}^{\theta}(t) - T_{j}^{\theta}(t)\|_{2}^{2} d\mu_{0}^{\theta}(t) \\ &= \int_{\mathbb{R}} \|(F_{\mu_{i}^{\theta}}^{-1} \circ F_{\mu_{0}^{\theta}})(t) - (F_{\mu_{j}^{\theta}}^{-1} \circ F_{\mu_{0}^{\theta}})(t)\|_{2}^{2} d\mu_{0}^{\theta}(t) \\ &= \int_{0}^{1} \|F_{\mu_{i}^{\theta}}^{-1}(\tau) - F_{\mu_{j}^{\theta}}^{-1}(\tau)\|_{2}^{2} d\tau = \mathcal{W}_{2}^{2}(\mu_{i}^{\theta}, \mu_{j}^{\theta}) \end{split}$$

where again we used the definition of the one-dimensional Monge map, $T_i^{\theta} = F_{\mu_i^{\theta}}^{-1} \circ F_{\mu_0^{\theta}}$, and the change of variable $\tau = F_{\mu_0^{\theta}}(t)$.

As a corollary of C1 and C2 we have:

$$SW_2^2(\mu_i, \mu_j) = \int_{\mathbb{S}^{d-1}} W_2^2(\mu_i^{\theta}, \mu_j^{\theta}) d\sigma(\theta) = \int_{\mathbb{S}^{d-1}} \|\phi_{\theta}(\mu_i) - \phi_{\theta}(\mu_j)\|_{\mu_0^{\theta}, 2}^2 d\sigma(\theta)$$

1.2. Full Experimental Results

In Table 1 and 2, we provide the full experimental results with standard deviation. GeM and Cov do not have a std as their outputs are deterministic.

	P	oint MNIST 2	D	ModelNet 40			Oxford 5k		
	Precision@k			Precision@k			Precision@k		
	k=4	k=8	k=16	k=4	k=8	k=16	k=4	k=8	k=16
GeM-1 (GAP)	0.10	0.10	0.10	0.14	0.14	0.14	0.29	0.25	0.22
GeM-2	0.29	0.29	0.29	0.30	0.28	0.25	0.38	0.31	0.27
GeM-4	0.39	0.39	0.38	0.34	0.31	0.28	0.09	0.09	0.09
Cov	0.25	0.25	0.25	0.45	0.43	0.41	0.35	0.30	0.26
FSPool	$0.75 {\pm} 0.00$	$0.74 {\pm} 0.00$	$0.72 {\pm} 0.00$	$0.51 {\pm} 0.00$	$0.48 {\pm} 0.00$	$0.44 {\pm} 0.00$	$0.43 {\pm} 0.03$	$0.36{\pm}0.02$	$0.36 {\pm} 0.01$
WE	$0.89{\pm}0.00$	$0.88{\pm}0.00$	$0.86{\pm}0.00$	$0.71{\pm}0.00$	$0.68{\pm}0.00$	$0.64{\pm}0.00$	$0.54{\pm}0.04$	$0.47{\pm}0.02$	$0.39{\pm}0.02$
SLOSH (L = d)	$0.78 {\pm} 0.08$	$0.76 {\pm} 0.08$	$0.74 {\pm} 0.08$	$0.40 {\pm} 0.01$	$0.38 {\pm} 0.00$	$0.35 {\pm} 0.00$	$0.43 {\pm} 0.03$	$0.36 {\pm} 0.03$	$0.30 {\pm} 0.03$
SLOSH (L > d)	$0.89{\pm}0.01$	$0.88{\pm}0.01$	$0.86{\pm}0.01$	$0.63{\pm}0.00$	$0.59{\pm}0.00$	$0.55{\pm}0.00$	$0.52{\pm}0.02$	$0.45{\pm}0.01$	$0.37{\pm}0.01$

Table 1. Retrieval results of baselines and our approach on set retrieval on the three data sets (precision@k).

Table 2. Retrieval results of baselines and our approach on set retrieval on the three data sets (accuracy).

	Point MNIST 2D			ModelNet 40			Oxford 5k		
	Accuracy			Accuracy			Accuracy		
	k=4	k=8	k=16	k=4	k=8	k=16	k=4	k=8	k=16
GeM-1 (GAP)	0.11	0.10	0.10	0.17	0.19	0.21	0.35	0.31	0.29
GeM-2	0.32	0.35	0.37	0.34	0.36	0.37	0.53	0.40	0.38
GeM-4	0.45	0.47	0.49	0.39	0.39	0.39	0.09	0.09	0.09
Cov	0.26	0.28	0.28	0.51	0.52	0.52	0.55	0.37	0.33
FSPool	$0.80{\pm}0.00$	$0.81{\pm}0.01$	$0.81{\pm}0.01$	$0.58{\pm}0.00$	$0.58{\pm}0.01$	$0.58{\pm}0.01$	$0.50 {\pm} 0.04$	$0.53 {\pm} 0.06$	$0.44 {\pm} 0.05$
WE	$0.92{\pm}0.00$	$0.92{\pm}0.00$	$0.92{\pm}0.00$	$0.76{\pm}0.01$	$0.76{\pm}0.00$	$0.75{\pm}0.01$	$0.70{\pm}0.08$	$0.68{\pm}0.04$	$0.61{\pm}0.05$
SLOSH (L = d)	$0.82 {\pm} 0.06$	$0.83 {\pm} 0.06$	$0.82{\pm}0.06$	$0.46 {\pm} 0.01$	$0.47 {\pm} 0.01$	$0.46 {\pm} 0.00$	$0.54{\pm}0.04$	$0.53 {\pm} 0.07$	$0.45 {\pm} 0.07$
SLOSH (L > d)	$0.92{\pm}0.01$	$0.92{\pm}0.01$	$0.92{\pm}0.01$	$0.68{\pm}0.01$	$0.67{\pm}0.00$	$0.65{\pm}0.00$	$0.69{\pm}0.03$	$0.67{\pm}0.03$	$0.61{\pm}0.03$