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A. Overview
In this supplementary material, we provide additional

details and experimental results for our proposed SSVOD.
In summary, the following items are presented.

• Details of the mathematical notations used in the main
paper.

• Details of the data augmentations used in model train-
ing.

• Additional ablation studies and performance analyses.

• Analysis of the training loss curves for SSVOD.

• Additional qualitative comparisons on different class
of objects.

B. List of Notations
All the notations used in the main paper are summarized

in Table 1.

C. Additional Implementation Details
Additional details on the implementations are summa-

rized in Table 2.

D. Data Augmentations
In SSVOD, we use three sets of augmentations to process

the labeled set, unlabeled set for the teacher, and unlabeled
set for the student, respectively. The details of the augmen-
tations used in SSVOD is presented in Table 3. For strong
augmentation, we consider additional geometric augmenta-
tions and the cutout augmentation [1]. In contrast, weak
augmentation only contains random flipping to reduce data
variations for the teacher network to enable more confident
pseudo-label generation. We primarily incorporate the aug-
mentation schemes that are heavily used in semi-supervised

image object detection [3, 4]. In SSVOD, the same aug-
mentation parameters are maintained over each sequence
of key and reference images in labeled and unlabeled sets.
Since the reference frames are mostly used to enhance the
key frame features, it is necessary to maintain the same aug-
mentation choices on each set.

E. Additional Ablations

We perform ablation studies to compare the perfor-
mance of the proposed SSVOD and baseline supervised ap-
proaches. We follow the single labeled key frame per video
setting for the supervised baseline and the proposed SSVOD
approach. All cases are evaluated on the ImageNet-VID [2]
validation set and we report the mAP@0.5 score unless oth-
erwise mentioned.

E.1. Per-Class Performance Analysis

We study the per-class performance to determine the
improvement gain on the evaluation set. In Figure 1, we
present per-class mAP scores obtained from the baseline
supervised approach and the proposed SSVOD scheme.
SSVOD significantly improves the mAP score for most of
the classes. We observe large mAP improvements on the
challenging classes such as red panda in which SSVOD
achieves around 28 times higher mAP. We further present
normalized confusion matrix on the class predictions of su-
pervised and SSVOD approaches, which is shown in Fig-
ure 2. Our SSVOD approach achieves consistent perfor-
mances on most classes by considerably improving the per-
formance for the challenging classes. For example, the min-
imum accuracy on lion class with the supervised approach is
nearly 0%, whereas with the SSVOD approach it rises to al-
most 20%. Thus, proper utilization of the unlabeled frames
throughout the training video with the proposed SSVOD ap-
proach has great potential to improve the performance with
scarce annotations.
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E.2. Loss Curve Analysis

We present loss curves over training iterations as shown
in Figure 3. In the supervised training, both the classifica-
tion and bounding box losses gradually decrease until sat-
uration. In the SSVOD training, we notice a similar be-
havior on the supervised losses. For unsupervised losses in
SSVOD, the hard classification loss and bounding box loss
start from zero since the model can’t generate high confi-
dent pseudo-labels which leads to filtration of all the labels.
On the other hand, the unsupervised soft loss initiates the
training on the unlabeled sets. Gradually, the model gen-
erates highly confident pseudo-labels and the unsupervised
losses continue to rise. Finally, both the supervised and un-
supervised losses converge together as training progresses.

E.3. Performance Comparison on Objects of Dif-
ferent Sizes and Motions.

We study the performance on objects with different sizes
and motion categories following [6]. The results are shown
in Table 4. Recognizing smaller and faster objects is rel-
atively more challenging. We observe that supervised ac-
curacy is considerably low on small and fast objects. We
achieve +4.0 and +9.2 mAP (@0.5:0.95) improvements on
the middle and large objects, respectively. Accordingly, on
the medium and slow objects, we notice consistent improve-
ments of +4.7 and +10.1 points, respectively. However,
the performance improvements are comparably smaller in
the challenging small (+2.1 points) and fast (+2.3 points)
objects.

E.4. Effect of Different Choices of Pseudo-Label
Thresholds on performance.

We study the effect of different choices of thresholds
in pseudo-label selection. We present the performance for
combinations of threshold choices in Table 5. Best perfor-
mance is achieved when the confidence threshold (γc) is set
to 0.8 for soft class distillation, 0.9 for IoU threshold (ζIoU )
in bounding box regression, and 0.005 for KL-divergence
threshold (ηdiv) in hard-label classification. Higher values
for these thresholds reduce the number of pseudo-labels for
the unlabeled set, whereas lower values compromise the
pseudo-label quality, resulting in confirmation bias [5]. We
have carried out all other experiments with the best choice
of these thresholds.

E.5. Additional Qualitative Results

We provide additional visualizations of the qualitative
results obtained from SSVOD and the supervised scheme in
Figure 4. As discussed earlier, SSVOD can learn the tem-
poral variations of each object by utilizing sets of unlabeled
images from different time steps in a video. We observe that
SSVOD generates more stable class and bounding box pre-
dictions throughout the video without any post-processing.

In contrast, the supervised approach generates inconsistent
results which can not properly adapt to the temporal varia-
tions present in challenging conditions.
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Table 1. Different notations used to describe the operations of SSVOD. We categorize the notations into three types.

Type Description Notation
Scaler Parameters number of videos M

number of frames per video N
number of key frames per video nk

number of reference frames per video nr

number of labeled key frames per video nl
k

number of unlabeled key frames per video nu
k

number of objects in the tth frame nt

cross-IoU threshold ζIoU
confidence threshold γc

cross-divergence threshold ηdiv
Functions/Models video object detection network Zθ(·)

flow network F(·)
feature warping W(·)

cross-IoU estimator IoU(·)
cross-KL divergence estimator DKL(·)

Vectors/Matrix key frame at timestamp t in the mth video Kt
m

key frame at timestamp t− i in the mth video Rt−i
m

annotations of the tth frame in the mth video ytm
pseudo-label of the tth frame in the mth video ptm

key feature fk
reference feature fr

flow-warped key feature from the reference frame fr→k

Raw feature set at timestamp t Xt
raw

flow-warped feature set at timestamp t+ j Xt+j
warped

predictions on raw feature set at timestamp t P t
raw

class predictions on raw feature set at timestamp t P t
raw,cls

bounding box predictions on raw feature set at timestamp t P t
raw,bbox

filtered pseudo bounding boxes at timestamp t P t
bbox

filtered pseudo hard-class labels at timestamp t P t
cls

filtered pseudo soft-class labels at timestamp t P t
soft

Table 2. Implementation details on training and evaluation protocols of SSVOD. The provided values are chosen based on empirical study
on ImageNet-VID dataset [2].

Variables Value

Training

image size in pixels (height, width) (1000, 600)
number of key image/set 1

number of reference images/set 2
reference frame timestamp range shifted from key frame [-9, 9]

training iterations 40000
labeled set/batch 1

unlabeled set/batch 1
optimizer SGD

learning rate 0.005
EMA momentum 0.99

Evaluation

image size in pixels (height, width) (1000, 600)
number of reference images/set 30

reference frame timestamp range shifted from key frame [-15, 15]
model student



Table 3. Summary of the data augmentations used in SSVOD training. “-” denotes no augmentation is applied. We apply sequential
augmentation on labeled and unlabeled sets where same augmentation parameters are used for each key and reference frame for a particular
set. We extended the standard augmentations extensively used in semi-supervised image object detection [3, 4] to operate with videos.

Sequential
Augmentation Labeled set training Unlabeled set training

(strong augmentation)
Unlabeled set training
(weak augmentation)

Random flip p = 0.5, ratio ∈ (0, 1) p = 0.5, ratio ∈ (0, 1) p = 0.5, ratio ∈ (0, 1)
Contrast jitter p = 0.1, ratio ∈ (0, 1) p = 0.1, ratio ∈ (0, 1) -
Equalize jitter p = 0.1, ratio ∈ (0, 1) p = 0.1, ratio ∈ (0, 1) -
Solarize jitter p = 0.1, ratio ∈ (0, 1) p = 0.1, ratio ∈ (0, 1) -

Brightness jitter p = 0.1, ratio ∈ (0, 1) p = 0.1, ratio ∈ (0, 1) -
Sharpness jitter p = 0.1, ratio ∈ (0, 1) p = 0.1, ratio ∈ (0, 1) -

Random posterize p = 0.1, ratio ∈ (0, 1) p = 0.1, ratio ∈ (0, 1) -
Translation - p = 0.3, ratio ∈ (−0.1, 0.1) -

Rotation - p = 0.3, ratio ∈ (−30, 30) -
Shear - p = 0.3, ratio ∈ (−30, 30) -
Cutout - num ∈ (1, 5), ratio ∈ (0, 0.2) -

Table 4. Performance comparison with objects of different sizes and motions. Here, mAP@0.5:0.95 score is reported.

Method Object Size Motion

Small Middle Large Fast Medium Slow
Supervised 6.7 16.5 34.5 13.8 23.9 35.8
Ours 8.8 20.5 43.7 16.1 28.6 45.9

Table 5. Ablation study on the effect of different choice of thresholds for selecting pseudo bounding box, hard, and soft-class labels.

γc ζIoU ηdiv mAP mAP@0.5 mAP@0.75
0.8 0.8 0.005 38.2 61.4 41.3
0.8 0.9 0.005 39.2 63.8 43.1
0.9 0.9 0.005 38.5 61.7 42.6
0.8 0.9 0.01 38.4 62.0 42.3
0.8 0.85 0.005 38.7 63.9 42.4



Figure 1. Per-class mAP performance comparison on the ImageNet-VID validation set [2] between the supervised and our proposed
SSVOD approaches. In general, SSVOD significantly improves the supervised performance. Performance gain is more prominent on the
challenging classes.



(a) Supervised

(b) SSVOD

Figure 2. The normalized confusion matrix for the per-class classification performance with the (a) supervised, and (b) our proposed
SSVOD approaches. SSVOD significantly improves the classification performance on the challenging classes in which the supervised
approach performs poorly.



(a)

(b)

Figure 3. Analysis of the loss curves with (a) supervised approach, and (b) our proposed SSVOD approach. Supervised losses gradually
decreases and saturates. In SSVOD, unsupervised losses rises gradually with improved pseudo-label generation. Finally it converges with
the supervised loss.



Figure 4. Qualitative performance analysis between the supervised and our proposed SSVOD approach. SSVOD generates more consistent
predictions over various time steps across the video.
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