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1. Dataset Description
In this section, we provide a detailed description of the

three datasets considered to evaluate our method. Further,
we provide a statistics of anomaly instances in terms of du-
ration and frequency in Figure 1.

UCF-Crime (UCF-C) [8] : It is a diverse and large-scale
dataset containing 1900 real-world surveillance videos from
13 types of anomaly activities. In this dataset anomaly ac-
tivities may occur for a long or short duration, which makes
the detection problem more challenging. It has 1610 videos
for training, out of which 810 and 800 videos belong to
anomaly and normal classes respectively. Similarly, for test-
ing there are 290 videos containing 140 anomalies and 150
normal videos.

XD-Violence (XD-V) [10] : It is a diverse and large-scale
audio-visual dataset collected from movies, games, CCTV
cameras to cover 6 types of anomalies. It contains 4754
untrimmed videos with a total of 217 hours, out of which
2349 videos are normal and 2405 videos are anomalies. The
official training set contains 3954 videos and the test set
contains 800 videos. To support the setting of weak super-
vision, only the test set has temporal labels for performance
evaluation.

IITB-Corridor (IITB-C) [7] : It is also a medium-scale
dataset recorded in a corridor of IIT Bombay campus with

Duration (in Seconds)
Fr

eq
ue

nc
y

0

100

200

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

UCF-C XD-V IITB-C

Figure 1. Visualization of length or duration of anomaly instances and
their corresponding frequencies in UCF-C, XD-V, and IITB-C. To obtain
these plots, we parse the whole datasets of UCF-C and IITB-C, but for
XD-V dataset we consider only the test set. Based on this plot, we set the
threshold (th) to 2 second for defining short and long anomalies in all three
datasets.

a single camera setup. It contains a total of 358 videos in
standard protocol [7] where 208 videos in the training set
are normal videos only and the test set contains 10 normal
videos and 140 anomaly videos. This standard-setting con-
sidering only normal videos in the train set is not suitable
for WSVAD. For this, [6] reorganizes the dataset to meet
the requirement of WSVAD. The new training split contains
both normal and anomaly classes and hence it is prepared
by randomly moving 71 anomaly videos from the standard
test set to the new anomaly class of the train set followed
by 147 normal videos from the standard train set to the new
normal class of the train set. Similarly, the new test split is a
collection of 69 remaining anomaly videos of the standard
test set and 71 normal videos from the standard train, test
set. In summary, the new training and testing split contain
218 and 140 videos respectively.

2. Implementation Details
We consider two popular general purpose backbone (i.e.

I3D-ResNet50 and Video-Swin) for spatio-temporal fea-
ture extraction. For each 16-frame snippet, 2048D fea-
tures from ’mixed 5c’ layer of I3D-ResNet50 and 1024D
features from ’stage-4’ layer of Video-Swin are extracted
where each backbone is pre-trained on Kinetics [4] dataset.
Following previous works [8, 9], we divide each video into
32 non-overlapping temporal segments. In outlier embed-
der (ED), we use three types of one-class learner (OC-L)
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Figure 2. Architectural design of three One-class learner modules: (a) Temporal Auto encoder, (b) Spatio-temporal Auto-encoder, (C) UNet. Here, blue
text denotes the 1D conv or 1D Deconv operation with respective kernel size, red text denotes the number of filters and green text denotes the activation
function used.

and the detailed architectural design is shown in Figure 2.
In CTST, the down scaler performs the downscaling by ap-
plying a max-pool operator with stride = 2τ and the up
scaler duplicates the temporal token to upsample the tempo-
ral resolutions. In CTFA we use 128 filters in each tempo-
ral convolution (TC) of K, Q, V , and the number of heads
of multi-head attention is set to 4, 4, 2 for UCF-Crime,
XD-Violence, and IITB-Corridor dataset respectively. The
number of units in the linear layer of CTFA block is set
to 256 for the UCF-Crime and IITB-Corridor datasets and
512 for the XD-Violence dataset. In the detector, the num-
ber of neurons for three FC layers is set to 128,32 and
1 respectively. Each FC layer in the detector is followed
by a ReLU activation and a dropout function with dropout
rate = 0.6 for all three datasets. The OE-CTST is end-to-
end trainable excluding the visual backbone. We train OE-
CTST using Adam optimizer with a learning rate of 0.0001
for UCF-Crime and IITB-corridor datasets and 0.001 for
the XD-Violence dataset. The loss weighting factors are
set to λ1 = λ2 = 0.5 and β1 = 0.3,β2 = 0.7 for all
three datasets. We also randomly select 30 anomaly and
30 normal videos as a mini-batch and compute the gradi-
ent using reverse mode automatic differentiation on com-
putation graph using Tensorflow. Then the loss is com-
puted and back-propagated for the whole batch. In UCF-
Crime, XD-Violence and IITB-Corridor datasets we train
up to 1050, 1700, and 450 epochs respectively four paral-
lel 2080Ti GPUs. For all three datasets, we use ten crops
for training and one crop for testing to reduce the inference
time.

3. Network Complexity Analysis
This section performs a complexity analysis of our OE-

CTST to meet real-world applicability. In contrast to tra-
ditional transformers, which are usually expensive in com-
putation, our method can work on real-time scenarios on a

Methods FLOPs(G) Speed(FPS)
Tian et al. [9]*(I3D-Res) 153.2 211
Majhi et al. [6](I3D-Res) 435.6 29.7

Chen et al. [1]* (Video-Swin) 234.5 194
OE-CTST (I3D-Res) 153.6 206

OE-CTST (Video-Swin) 292.8 130

Table 2. Complexity comparison of OE-CTST with competitive
methods. Here, G: Giga, FPS: Frames-per-second and * means
the methods use ten crops for testing which can even increase the
FLOPs and lower the speed mentioned in the table by a factor of
10.

single 2080Ti GPU. As shown in Table 2, our method is
computationally competitive in terms of FLOPs and speed
w.r.t. [9] while boosting the detection performance signif-
icantly. Unlike [6], our method does not rely on people
detection and tracking thus, ours is computationally much
more efficient and applicable for real-time applications.

4. Added Ablation Study

In this section, we provide an additional ablation study
of our method to show the necessity and effectiveness of
using temporal regularity features in normality learning by
one-class learner (OC-L). Since the overall performance of
our method has a direct dependency on the normalcy learn-
ing of the OC-L, we study the impact of various input fea-
tures to OC-L as shown in Table 3. It is visible that the
usage of temporal regularity features has stronger superior-
ity over the classical appearance features in terms of overall
performance gain in the official test set of the three data
sets. In UCF-C and XD-V datasets, there exists a signif-
icant performance gap between appearance and temporal-
regularity features, i.e. on average 4.06% and 5.02% re-
spectively. But for the IITB-C dataset, the performance gap
is reduced to 0.4% (on average). This phenomenon arises
in UCF-C and XV-D datasets because there are large intra-



OC-L
Appearance Feature Temporal-Regularity Feature

UCF-C XD-V IITB-C UCF-C XD-V IITB-C

T-AE [3] 82.54 76.21 88.62 86.99 81.78 89.04
ST-AE [2] 83.01 76.53 88.89 86.99 81.54 89.26
UNet [5] 83.18 76.81 88.79 86.94 81.31 89.18

Table 3. Ablation study to show the impact on overall anomaly
detection performance for different input features used in OC-L.
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Figure 3. Visualization of the number of videos used for training
and testing for each abnormal category in the official split of the
UCF-Crime dataset.

class appearance variations in the normal distribution since
the videos are collected from multiple sources (like CCTV,
YouTube, video games, and movies) with different lighting
conditions. Thus, the normal representation learned from
appearance features is less compact than that of temporal
regularity features. However, IITB-C is recorded in a fixed
scenario (in a corridor) without many variations of appear-
ance cues in the normal distribution and hence the perfor-
mance gap between appearance and temporal regularity fea-
ture is relatively less important. For a complex and real-
world event distribution, we found that the temporal regu-
larity features are more robust and salient, and enable OC-L
to generate more effective temporal position embeddings.

5. Necessity of K-Fold Evaluation

The anomaly detection performance obtained from offi-
cial test-split [8] of UCF-Crime has a strong bias towards
the easy and short anomalies (contains sharp changes in
the appearance and motion cues) like explosion, road ac-
cidents, shooting as they have significantly more samples
for testing. Due to this, some methods [8–10] which are
capable of capturing sharp changes tend to perform well on
the official test split. From Figure 3, it can be seen that
anomalies like abuse, arrest, arson, assault, burglary, fight-
ing, robbery, stealing vandalism have fewer test samples
compared to their training counterparts and these anoma-
lies are characterized by both subtle and progressive spatio-
temporal cues which are difficult to detect in a real-world
complex scenario. For this, we adopt the K-fold test eval-

uation (where, K=5) in our work which covers the entire
dataset for an unbiased evaluation of both simple/short and
complex/long anomalies.

6. Category Wise Performance Analysis
In this section, we provide an anomaly category wise

performance analysis of our method on UCF-C [8] dataset.
Since the official test-set of UCF-C has a non-uniform num-
ber of anomaly samples, we focus on the K-folds (K= 5)
evaluation, and the category-wise performance is shown in
Figure 4. It can be observed from Figure 4 that the aver-
age AUC of explosion, burglary, arson, assault, anomalies
is relatively higher than the others. This is due to the pres-
ence of spatio-temporally more salient abnormal patterns in
these categories which is easy to detect. But for anomalies
like abuse, arrest, stealing, shoplifting, robbery the average
AUC is relatively lower due to the existence of the subtle
and less discriminative cues w.r.t normal counterpart which
makes it difficult to detect. However, our method has ob-
tained better performance than Tian et al. [9] and Chen et
al. [1] in most of these abnormal categories as shown in Fig-
ure 5. Further, our method has gained a significant perfor-
mance boost in long anomaly categories like stealing, ar-
rest, robbery, shooting, shoplifting, burglary, fighting, as-
sault compared to Tian et al. [9] and Chen et al. [1]. But
there exists a few exceptions like road-accidents and van-
dalism where our method is less better than Tian et al. [9]
and Chen et al. [1]. To further investigate, we visualize the
videos and corresponding predictions in road-accidents and
vandalism categories. We observe that our method produces
more false positives after the occurrence of an anomaly
where the scene continues to be panic and this situation is
quite similar to an abnormal situation.
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Figure 4. Category-wise detection performance of UCF-Crime dataset in 5-Folds evaluation.
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