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SUPPLEMENTARY CONTENT

In this supplementary material, we present the following:

• We discuss additional related work based on histogram equalization (HE)-based techniques and retinex-based techniques

(S.1).

• We describe the processes for creating coarse map ground truth (S.2).

• We present the details of datasets used for training and evaluations (S.3).

• We discuss the details of experimental platform and evaluation metrics (S.4).

• We provide additional qualitative results on ablation study of our proposed method (S.5).

• We present additional qualitative results on various datasets (S.6).

S.1. Additional related works

HE-based methods: Lee et. al. [10] propose contrast enhancement algorithm based on layered difference representation.

They enhance image contrast by amplifying the gray level differences between adjacent pixels. Celik et. al. [2] use interpixel

contextual information to enhance the image. They use a 2D histogram of the input image constructed using a mutual

relationship between each pixel and its neighboring pixels. Wang et. al [19] introduce the probability distribution function of

an image, which is modified by weighting and thresholding before the histogram equalization to enhance the quality of the

image. Wadud et. al. [1] partition the image histogram based on local minima and assign specific gray level ranges for each

partition before equalizing them separately. Haidi et. al. [7] propose brightness-preserving dynamic histogram equalization

(BPDHE). It can produce the output image with a mean intensity almost equal to the mean intensity of the input, thus fulfilling

the requirement of maintaining the mean brightness of the image.

Retinex-based Methods: Early methods [8, 16] focused on color restoration at the cost of color consistency. Guo et.

al. [6] propose a simple method for low-light image enhancement where the illumination of each pixel is first estimated

individually by finding the maximum value in the R, G, and B channels. Li. et. al. [12] propose a Retinex model that

additionally considers a noise map to deal with images with excessive noise. Ren et. al. [17] propose Low-Rank Regularized

Retinex Model (LR3M), which injects the low-rank prior into a Retinex decomposition process to suppress noise in the

reflectance map. Fu et. al. [3] propose a model which can preserve the reflectance layer with more refined details with the

help of a bright channel prior.
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S.2. coarse map

The steps for generating a transmission map, an atmospheric light map, and coarse map ground truth are as follows:

1. First, we use the min filter and the max filter to get the dark channel prior and the bright channel prior.

2. Next, we compute global atmospheric light using a bright channel prior.

3. Following that, we use the bright channel to get an initial transmission estimate.

4. The dark channel is then used as a supplement to adjust any incorrect transmission estimates derived from the bright

channel prior earlier.

5. Finally, we obtain an enhanced image coarse map using the global atmospheric light and transmission map by feeding

them into the atmospheric scattering model.

Step-1: Dark Channel Prior (DCP) represents the minimum intensity of pixels in the local patch. It can be expressed as

Idark(x) = min
c∈[r,g,b]

( min
y∈Ω(x)

(Ic(y))) (1)

Where Ic is the color channel of image I , Ω(x) is a local patch centered at x, and y is the pixel in the local patch of Ω(x).
Similarly, Bright Channel Prior (BCP) is the maximum intensity of pixels in the local patch. It can be expressed as

Ibright(x) = max
c∈[r,g,b]

( max
y∈Ω(x)

(Ic(y))) (2)

The DCP and BCP for given input low-light image are depicted in Figure S.1

(a) Input Image (b) DCP (c) BCP

Figure S.1. (a) Input low-light image, (b) dark channel prior (DCP) for low-light image, (c) bright channel prior (BCP) for the low-light

image.

Step-2: For global atmospheric light, we use the top 10% of BCP. The BCP approximates the dark denseness of the

atmosphere of the input image very well; therefore, the BCP is used to improve the atmospheric light estimation. This 10%

of values is used to verify that a little abnormality does not significantly impact lighting.

Step-3: According to the BCP, the bright channel Ibright of a well-illuminated radiance (I) should be 255. The initial

transmission map can be expressed using BCP based on the following equation.

tbright(x) =
Ibright(x)−Ac

255−Ac
(3)

The BCP considers atmospheric light colorless and attempts to filter out this color by measuring it from the BCP. This

transmission map fails with a patch containing bright objects like lamp lights. To address the concerns raised above, we use

the dark channel in the next step as a supplement to rectify possibly incorrect transmission estimations derived from the BCP

earlier.

Step-4: The DCP is also used to generate a transmission map, and the difference between the DCP and BCP is computed.

This computation is performed to adjust possibly incorrect transmission estimations derived from the BCP in the previous

step. Any pixel x with a difference smaller than the specified value of α (0.6, established empirically) is in a dark object,

making its depth untrustworthy. This renders pixel x transmission unstable. As a result, by using the transmission maps’

product, the faulty transmission may be remedied.



Step-5: The derived transmission map t(x) and atmospheric light A can be used to recover the scene radiance using the

atmospheric scattering model using the following equation:

J(x) =
I(x)−A

max(t(x), t0)
+A (4)

When the transmission t(x) is near zero, the term
I(x)−A

t(x) has a very high value, and the immediately recovered scene

radiance J will contain a high amount of noise. To overcome this issue, we limit the transmission t(x) value to a lower

constraint value t0. We use the value of t0 as 0.15, which was determined by experimental analysis.

Figure S.2 depicts the coarse map and corresponding ground-truth normal-light image.

(a) Input Image (b) coarse map (c) normal-light GT

Figure S.2. (a) Input low-light image, (b) Coarse map generated from low-light and normal-light image, (c) Ground truth normal-light

image

S.3. Dataset

We use LOL-v1 [23] and LOL-v2-real [25] paired dataset for training. Both the v1 and v2 versions of LOL include

noticeable noise. The LOL-v1 contains 485 low/normal image pairs for training and 15 pairs for testing. Each pair has a

low-light input image and a well-exposed reference image. LOL-v2 is split into two categories: real and synthetic. LOL-v2-

real includes 689 pairs of low/normal-light image pairs for training and 100 pairs for testing. Most low-light images were

captured by varying the exposure duration and ISO while keeping the other camera settings constant. We use DICM [10],

LIME [5], MEF [13] NPE [20], and VV [18] datasets for testing efficacy of LLIE techniques.

S.4. Implementation platform and metrics

All the experiments are carried out using Pytorch [15] framework with an NVIDIA A100 GPU. All the training and

testing images are resized to 512 × 512 pixels. We use the Adam optimizer [9] with a batch size of 16. We train LIVENet

for 3.1× 104 number of iterations with a learning rate of 3× 10−4. We employ both full-reference and non-reference image

quality assessment measures to compare the performance of various LLIE algorithms. Peak signal-to-noise ratio (PSNR),

structural similarity (SSIM) [22], mean absolute error (MAE), and Learned Perceptual Image Patch Similarity (LPIPS) [26]

are used for LOL-v1, and LOL-v2 paired testing data. NIQE [20] is used for DICM, LIME, MEF, NPE, and VV unpaired

datasets. Note that the higher the PSNR and SSIM, the better the enhancement. The lower the MAE, LPIPS, and NIQE,

the more realistic the refined images. We compare against the following nine techniques: ZeroDCE [4], ZeroDCE++ [11],

SCI [14], RetinexNet [23], KinD [28], KinD++ [27], SNR [24], DCC-Net [29], and LLFlow [21]. We assess all networks on

the same train and test data set, with the same loss and hyperparameters.

S.5. Additional Ablation Results

Figure S.3 depicts the qualitative outcomes of several LIVENet components. We also compare the PSNR measure between

the entire LIVENet network and LIVENet without the corresponding module to highlight the impact on noise removal. The

green rectangle magnifies the small area of the image to highlight finer details. In Figure S.3, the first figure on the left shows



that on removing the LSDB module, the PSNR reduces to 26.11. This shows that LSDB plays an important role in noise

reduction from the low-light image. In Figure S.3, the second figure on the left shows that on removing the GSIP module,

the output image contains more noise and poor texture; this is confirmed by the fact that the PSNR score without GSIP is just

23.53. In Figure S.3, the third figure on the left shows that when the Y channel is not replaced with a noise-free grayscale

image, there is a small amount of noise on the floor.

W/o LSDB module (PSNR=26.11) LIVENet (PSNR=29.13)

W/o GSIP module (PSNR=23.53) LIVENet (PSNR=29.13)

W/o replacing Y channel (PSNR=26.77) LIVENet (PSNR=29.13)

Figure S.3. Qualitative results of ablation study: The noise removal effect of different components in LIVENet. Note that the three images

on the right-hand side are all the same images, but the magnified areas are different.

The influence of LIVENet components on texture enhancement is shown in Figure S.4. We show the results without the

second stage (Refinement Module) and the SFT layer. The SSIM of LIVENet is reduced from 0.93 to 0.91 by not utilizing the



SFT layer. Additionally, the figure illustrates that a two-stage LIVENet network can recover texture information efficiently

since the SSIM score without the second stage (W/o Refinement Module) is only 0.76.

W/o SFT layer (SSIM=0.91) LIVENet (SSIM=0.93)

W/o Refinement Module (SSIM=0.76) LIVENet (SSIM=0.93)

Figure S.4. The texture improvement effect of different components for the same network. Note that the two images on the right-hand side

are both the same images, but the magnified areas are different.

S.6. Additional Visual Results

Our main paper had adequate quantitative (Table 1-2) and qualitative results (Figure. 6-8). Here, we provide more

qualitative analysis by comparing against all SOTA methods, including ZeroDCE [4], ZeroDCE++ [11], SCI [14], RetinexNet

[23], KinD [28], KinD++ [27], SNR [24], DCC-Net [29], and LLFlow [21]. Figure S.5 shows the qualitative comparison on

the LOL-v1 [23] dataset. Figure S.6 shows the qualitative comparison on the LOL-v2-real [25] dataset. Both the LOL-v1

and LOL-v2-real datasets are paired, and GT symbolizes the Ground Truth.

Figure S.7 shows the visual results of the DICM [10] dataset. Figure S.8 presents the LIME [5] dataset results. Figure S.9

shows the results on the MEF [13] dataset. Figure S.10 and Figure S.11 presents the outcomes of NPE [20], and VV [18]

datasets, respectively. It can be observed that, on several benchmarks, LIVENet outperforms the state-of-the-art techniques.
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Figure S.10. Results on NPE dataset.
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