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In this supplementary material, we provide (1) a
visual representation of our method MiMi for clarity
(2) additional experimental results to further analyze
the proposed MiMi approach (Multi-task benchmark,
and VTAB benchmark). (3) justify in more detail our
choice for the design of the importance score (4) the
effect of the parameters allocation in Adapters for
ViTs (5) provide details regarding the datasets used
in our experiments.

S1 Illustration of MiMi Design

In our work, we augment a pre-existing ViT model
with an ’adapter’ module. For each adapter, the in-
put is denoted as hi with dimension Mi. The adapter
undergoes two primary transformations.

Firstly, it maps hi to zi ∈ RNi through a fully-
connected layer characterized by a parameter matrix
W down

i . A non-linear activation function ϕ(·) is also
applied during this step. Subsequently, zi is trans-
formed back to an output ri ∈ RMi by another fully-
connected layer, parameterized by W up

i .

A special feature of the adapter is its residual skip-
connection. If ri is near zero, the adapter essentially
acts as an identity function, making minimal changes
to the input.

Our design of MiMi is influenced by an observa-
tion: if an entire row in W down

i and an entire column
in W up

i are zero, the adapter behaves as though its
complexity is reduced, effectively acting as if it has a
smaller dimension Mi, as illustrated in Fig.S1.
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Figure S1: Illustration of the design of adapter after
using MiMi.

S2 MiMi versus Vanilla train-
ing on CIFAR-100

Looking at Fig. S2), we observe the significant per-
formance gap between vanilla adapters compared to
adapters trained with MiMi approach. Our method
outperforms vanilla adapters with a more than 10%
accuracy gap at small sizes.

S3 Local versus Global Neu-
rons Selection

Here below, we provide extra experiments for
adapters with different sizes for VGG-Flowers,
CIFAR-10, and CIFAR-100.

Tables S1 and S2 report the performance of MiMi
algorithm with respect to vanilla training -Baseline-
on VGG-Flowers, CIFAR-10 and CIFAR-100. MiMi
outperforms vanilla adapters on all the adapters with
a significant performance gap. Interestingly, this
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Table S1: A comparative performance analysis of local and global neuron selection on VGG-Flowers.

Method Neurons Removal Selection Iterative Scaling
σ

32 64 128 256 512 1024 2048 4096

Vanilla adapters 94.80 90.12 89.42 88.85 86.03 86.09 85.14 85.14

Baselines

Local ✓ - 96.10 95.57 96.15 96.23 96.76 95.83 95.83

Local ✓ ✓ - 96.41 96.65 96.72 96.72 96.81 96.83 94.54

Global ✓ - 94.88 95.28 95.66 95.45 95.56 96.03 96.03

Global ✓ ✓ - 96.10 95.82 96.34 96.50 96.15 96.03 96.03

MiMi Global ✓ ✓ ✓ - 96.59 96.92 96.73 96.81 96.55 96.47 96.17

Table S2: A comparative performance analysis of local and global neuron selection on CIFAR-10 and CIFAR-
100.

Method Neurons Removal Selection Iterative Scaling
σ

32 64 128 256 512 1024 2048 4096

CIFAR-10

Vanilla adapters - 97.89 97.39 97.06 96.60 96.53 96.27 82.06 82.06

Baseline Local ✓ ✓ - 98.06 97.92 97.64 97.11 96.91 96.44 93.49

Random ✓ ✓ - 97.79 97.68 97.42 96.98 96.56 96.15 93.84

Gradient ✓ ✓ - 97.76 97.73 97.56 97.14 96.71 96.29 93.92

MiMi Global ✓ ✓ ✓ - 97.98 97.92 97.49 97.15 96.71 96.04 95.57

CIFAR-100

Vanilla adapters - 86.22 85.02 84.33 83.54 82.26 82.19 83.17 82.19

Baseline Local ✓ ✓ - 86.88 86.15 85.30 84.06 83.71 83.35 78.44

Random ✓ ✓ - 85.97 85.71 84.82 84.23 83.72 83.08 78.24

Gradient ✓ ✓ - 86.11 85.67 85.16 84.57 84.16 83.35 78.35

MiMi Global ✓ ✓ ✓ - 87.12 86.22 85.42 84.67 83.25 82.67 82.10

gap in performance expands, as we compare smaller
adapters σ = 256, ..., 4096 (higher compression ratio).

Furthermore, these results emphasize the useful-
ness of each component of the importance score for
MiMi. We notice that applying global neuron se-
lection, normalization, and iterative training outper-
forms local neuron selection on almost all adapter
sizes for VGG-Flowers (Table S1) and CIFAR-100
(Table S2). This indicates that each component of
the importance score of MiMi is important to boost
performance and reduce the parameters.

S4 Vanilla versus MiMi Train-
ing for Adapters

To validate the greater optimization performance of
MiMi, in Figs. S3, S4, we show the training loss

curves of vanilla, and MiMi training of adapters for
CIFAR-100, and SVHN, respectively. At the end of
the training, the two models (i.e. vanilla training
and MiMi) have similar numbers of training param-
eters.

We notice that the loss of the training using MiMi
algorithm is much smoother than vanilla training re-
sulting in adapters that generalize well on the down-
stream task as previously shown in Fig. 4. Fur-
thermore, we notice spikes in the training loss of
MiMi, due to the removal of neurons after each cycle.
Eventually, sequential training and neuron selection
is a successful strategy to find small networks while
maintaining good performance, since directly train-
ing small networks does not provide similar results
[5].



Table S3: Effect of adapters compression rate σi on
adapters performance in terms for top-1 accuracy
(%). Compression rate σ = ∞ is equivalent to not
adding an adapter. We vary the σi value for each
ViT stage (I, II, III, IV).

σi in each Swin Stage Dataset
I II III IV CIFAR-10 VGG-Flowers

128 128 32 32 97.91 89.90
32 32 128 128 97.64 87.05
128 32 128 32 97.84 89.45
32 128 32 128 97.72 88.49
128 128 128 32 97.79 89.22
256 128 64 32 97.91 89.84
32 64 128 256 97.43 86.90
128 128 ∞ ∞ 95.29 73.38
∞ ∞ 128 128 97.40 87.04
∞ 128 128 ∞ 96.97 84.65
128 ∞ ∞ 128 96.53 80.84

S5 Impact of the parameter al-
location

In this ablation study, we validate the idea that every
layer of a ViT needs to be adapted differently in order
to learn a new task. The Swin-B vision transformer
model that we use in all our experiments consists
of 4 stages. Therefore, we propose to evaluate the
performance when we vary the adapter size in each
stage. The results are reported in table S3.

First, it shows that the size of adapters has a strong
effect on the model performance. In general, the best
performances are achieved when using adapters with
a higher number of parameters. Furthermore, bigger
sizes of adapters are not sufficient for better perfor-
mance, but subject to which stage they are injected
into.

We observe that adding adapters to late stages
(i.e. III and IV) boosts the performance better
than injecting them into early stages: adapters with
σi = 128 added to (III, IV) stages rather than (I,
II) improve the performance from 95.29%, 73.38% to
97.40%, 87.04% on CIFAR-10 and VGG-Flowers, re-
spectively.

S6 Illustrations of Local versus
Global Neuron Removal

Figures S5 and S6 show additional illustrations of
the distribution of the removed and remaining neu-
rons using MiMi on VGG-Flowers, and CIFAR-10.
We show the learned adapters at different cycles for
both local and global neuron selection methods. We
also complete these visualizations (Figures S7 and S8)
with histograms where we show the percentages of
remaining neurons. Overall, these experiments show
that our method is capable of obtaining different pa-
rameter allocations that are specific to every task.

S7 Magnitude assumption as
importance score

In this section, we provide more insights on the im-
portance score employed within MiMi. In particu-
lar, under Gaussian input assumption for adapters
and imposing weight decay at training time, we will
see that, towards a better choice of parameters to
be removed, considering just W down

i is sub-optimal,
and W up

i should be accounted as well. We drop the
adapter index i for abuse of notation, as we will al-
ways refer to the same adapter.
Let us have an m-dimensional input h, whose el-
ements are distributed according to a Gaussian
N (µk,Σk). We assume the adapter has already been
trained; hence we consider, in the down-sampling
phase all the wdown

jk as constants. From the property
of linear expectations, we know that, before reaching
the non-linear activation, the post-synaptic potential
is still a Gaussian random variable, having an average

µdown
j =

m∑
k=1

W down
jk · µk (1)

and variance

Σdown
j =

m∑
k=1

W down
jk ·

[
W down

jk Σkk + 2
∑
k′<k

W down
jk′ Σkk′

]
,

(2)
where Σab indicates an element of the covariance ma-
trix for the input of the adapter. For the sake of



tractability, if we assume Σkk′ = 0 ∀k ̸= k′, equa-
tion 2 simply reduces to

Σdown
j =

m∑
k=1

(
W down

jk

)2
Σkk. (3)

In transformers, the commonly-used activation func-
tion is the Gaussian error linear unit (GELU), whose
analytical expression is

ϕ(x) = x · 1
2

[
1 + erf

(
x√
2

)]
(4)

where erf(·) is the error function. For values close
to zero, or larger than zero, it can be approximated
to the identity function, while for values much lower
than zero, it asymptotically tends to zero. Let us fo-
cus on the first scenario: we can approximate the
post-synaptic potential to the output of the non-
linearity, saying that the output

zj ≈ N (µdown
j ,Σdown

j ). (5)

At this point, the signal undergoes an up-sampling:
following up on the same approach adopted for the
down-sampling, we find that the output r still follows
a Gaussian distribution having an average

µup
l =

n∑
j=1

Wup
jl , µ

down
j =

n∑
j=1

Wup
jl

m∑
k=1

W down
jk ·µk (6)

and variance

Σup
l =

n∑
j=1

(
Wup

jl

)2
(7)

Σdown
j =

n∑
j=1

(
Wup

jl

)2 m∑
k=1

(
W down

jk

)2
Σkk (8)

µup
l,ā = µup

l −Wup
al

m∑
k=1

W down
ak · µk

Σup
l,ā = Σup

l − (Wup
al )

2
m∑

k=1

(
W down

ak

)2
Σkk (9)

In order to assess the impact of removing a whole
neuron in the embedding space, we can write the KL-
divergence of the distribution for rl with and without
the a-th neuron in the embedding space:

DKL(rl, rl,ā) =

log

(
Σup

l −(Wup
al )

2∑m
k=1

(
W down

ak

)2
Σkk

Σup
l

)

+
(Σup

l )
2
+
(
µup
l − µup

l +Wup
al

∑m
k=1 W

down
ak · µk

)
2 ·
[
Σup

l − (Wup
al )

2∑m
k=1

(
W down

ak

)2
Σkk

]2 −1

2
.

(12)

According to equation 9, we rewrite equation 12 as
13.

DKL(rl, rl,ā) =

log

(
1−

(Wup
al )

2∑m
k=1

(
W down

ak

)2
Σkk

Σup
l

)

+
(Σup

l )
2
+
(
Wup

al

∑m
k=1 W

down
ak · µk

)
2 ·
[
Σup

l − (Wup
al )

2∑m
k=1

(
W down

ak

)2
Σkk

]2 − 1

2
.

(13)

Let us now investigate which is the a-th neu-
ron which, when removed, causes the least pertur-
bation at the output rl (or in other words, such
that DKL(rl, rl,ā) is as low as possible). Look-
ing at the argument of the logarithm, we ask
(Wup

al )
2 ∑m

k=1(W
down
ak )

2
Σkk

Σup
l

= 0 and, since we can

safely assume Σup
l , we need to select a such that

(Wup
al )

2∑m
k=1

(
W down

ak

)2
Σkk = 0. Considering that

also Σkk > 0 ∀k, we satisfy the condition if either:

• W down
ak = 0 ∀k, namely the L1 norm for W down

−a

is zero;

• Wup
al = 0. Considering though that this condi-

tion needs to be satisfied for all the l outputs of
the adapters, we ask Wup

al = 0 ∀l or, in other
words, the L1 norm for W up

a− is also zero.

We observe that, when either of the two conditions



is met, the KL divergence is zero as

DKL(rl, rl,ā) = log(1) +
(Σup

l )
2

2 · (Σup
l )

2 − 1

2
= 0

We can also assume that if either W down
ak = 0 ∀k

or Wup
al = 0 ∀l, the norm of the non-zero parame-

ters associated with some neuron a are small when
training with any weight penalty regularizer (as the
contribution to the output is zero, the signal is either
not forward or back-propagated, leaving the weight
penalty term the only update for these parameters).

S8 Detailed evaluation of MiMi
on MultiTask/DomainNet
benchmarks

Table S4 reports the number of trained parame-
ters and the average accuracy across datasets in the
DomainNet benchmark. For both, the number of
trained parameters is reported in millions, and the
average top-1 accuracy on the datasets is reported in
the rightest column.
We observe that full fine-tuning has generally the

highest accuracy, but it requires a huge number of
parameters to be finetuned for each dataset. Among
the vanilla fine-tuning baselines, we observe that tun-
ing the parameters of the attention/MLP layer turns
out to be surprisingly effective. Nevertheless, it still
requires a high number of task-specific parameters,
compared to other PET approaches. Linear probing
does not perform well illustrating the need to change
the feature representations of the model when adapt-
ing to new tasks.
PHM, and Compacter are effective methods to get

on-par performance with full-model finetune while
adjusting less than 2% of the parameters. Contrarily
to what is observed for NLP tasks [9], PETs on vi-
sual tasks do not reach full fine-tuning performance
on any dataset with a low number of trainable param-
eters (smaller than 2%). VPT does not perform well,
indicating that injecting tokens into the embedding
space does not help much if the pre-training dataset is
different from the downstream task. Generally speak-
ing, all PET methods maintain similar performance

rankings on all tasks. This suggests that the choice
of the best adaptation strategy does not depend on
the downstream task.
Adapters outperform all PET methods in terms of
accuracy (69.39% for DomainNet, 92.91% for Multi-
task) but just with a higher number of trainable pa-
rameters (1.37M, 4.90% of the total) for σ = 32.

Adapters outperform AdaptFormer with fewer pa-
rameters (92.91% with 1.37M parameters, versus
92.27% with 2.98M parameters). This result indi-
cates that adapting the representations after both
MSA and MLP blocks, as done in Adapters (see Fig.
S9), allows better adaptation than acting only on the
MLP block via a parallel branch (as done in Adapt-
Former [2]).
When comparing adapter with uniform and pro-

portional parameter distribution, we observe that al-
locating parameters proportionally to the layer di-
mension performs better. Indeed, adapters with
σ = 32 outperform adapters with ni = 47∀i (70.65%
vs 69.39% in DomainNet, 93.53% vs 92.91% in Multi-
task). This suggests that the last layers, which have
higher dimensionality, are more task-specific, and
consequently require more adaptation. We also show
that reducing the size of adapters (ni = 23) hurts
the performance with a drop which, despite being
marginal for Multi-task (0.23%) is more consistent in
DomainNet (1.01%). This emphasizes that training
tiny adapters in a vanilla fashion leads to unsatisfy-
ing performance and motivates our specific training
procedure.

S8.1 Impact of ρ

In this section, we investigate the effect of the hyper-
parameter ρ (amount of neuron removal) in our
method MiMi.

In Fig. S10. We notice that higher values of ρ hurt
the performance because we remove many parameters
after each cycle, but we reduce the size of adapters
significantly. On the other hand, if ρ is small (i.e
25%), we maintain good performance on the VGG-
Flowers dataset, but it requires higher training cycles
C to reach the target compression rate σtarget.
We have a trade-off between the performance, and

training budget in order to reach the σtarget. Re-



Table S4: Results on the DomainNet benchmark [20]. C, I, P, Q, R, and S stand for Clipart, Infograph,
Painting, Quickdraw, Real, and Sketch respectively. † is equivalent to Adapters with σ = 8. Methods are

grouped according to the relative number of trainable parameters ( ≤ 2% , ∈]2, 10[% , ≥ 10% )

Method # Params Trained C. I. P. Q. R. S. Mean
(M) ↓ (%) ↓ ↑

Full fine-tuning 27.8 100 79.16 48.29 74.64 75.88 86.21 73.26 72.90

Att-blocks 8.93 32.14 48.36 75.38 73.28 86.13 72.81 72.57 72.57

MLP-blocks 17.54 63.12 79.23 48.11 75.02 74.82 86.35 73.29 72.80

MiMi (0 cycle)† 4.44 16.15 78.11 46.93 74.38 72.19 86.09 71.97 71.61

AdaptFormer-256 2.54 9.24 75.32 43.74 72.16 66.00 83.88 67.68 68.13

AdaptFormer-64 0.84 3.06 73.76 42.38 71.11 63.41 83.23 66.14 66.67

VPT (100 tokens) 0.71 2.57 64.33 18.65 63.20 59.40 79.65 56.41 56.94

Adapters (σ = 32) 1.37 4.90 77.42 46.51 74.06 69.81 85.30 70.84 70.65

Adapters (ni = 47) 1.37 4.90 76.15 45.28 73.04 67.86 84.83 69.17 69.39

Adapters (ni = 23) 0.68 2.47 75.28 44.17 72.41 66.44 83.98 68.02 68.38

MiMi (1 cycle) 0.80 2.89 76.83 46.00 73.76 67.93 85.05 69.61 69.86

Linear prob 0.27 0.95 62.89 33.96 64.93 42.95 81.69 54.24 56.77

PHM-Adapter 0.47 1.72 75.79 44.62 72.49 66.62 83.73 68.51 68.62

Compacter 0.41 1.44 75.25 44.19 72.09 66.01 83.42 67.99 68.16

BitFit 0.34 1.22 72.14 41.07 70.00 60.39 82.43 64.43 65.08

VPT (10 tokens) 0.32 1.15 61.91 24.87 57.05 57.09 76.94 55.12 55.49

SSF 0.28 0.96 74.45 42.64 71.72 64.70 82.95 65.90 67.06

Fact-TK32 0.33 1.18 72.46 41.14 70.32 61.26 80.23 63.87 64.88

Adapters (ni = 1) 0.30 1.07 72.12 41.30 69.93 59.95 82.49 64.18 65.00

MiMi (2 cycles) 0.53 1.92 76.83 45.45 73.11 66.67 84.42 69.05 69.26

MiMi (3 cycles) 0.40 1.43 75.44 44.60 72.59 64.73 83.87 68.05 68.21

MiMi (4 cycles) 0.30 1.07 74.38 43.52 71.50 63.41 83.12 67.46 67.23

moving too many parameters at each cycle hurts per-
formance. Maintaining good performance requires a
higher number of training cycles C.

S8.2 Evaluation on VTAB Benchmark

We experiment on VTAB [26] is a collection of 19 di-
verse visual classification tasks, which are organized
into three groups: Natural - tasks that contain nat-
ural images captured using standard cameras; Spe-
cialized - tasks that contain images captured via spe-
cialized equipment, such as medical and satellite im-
agery; and Structured - tasks that require geomet-
ric comprehension like object counting. Each task
of VTAB contains 1000 training examples. Follow-
ing [26], we use the provided 800-200 split of the train
set to determine hyperparameters and run the final
evaluation using the full training data. We report the
average accuracy score on the test set within three

runs.
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Figure S2: Comparison of top-1 accuracy of vanilla
adapters, and MiMi with respect to compression rate
σ on CIFAR-100 dataset. All MiMi results originate
from the same MiMi run. Adapters are trained for
the exact same number of epochs as their MiMi coun-
terparts. The size of blob markers represents the
number of trainable parameters. We notice that at
σ = 2, 4, 8, MiMi outperforms full finetuning.

Figure S3: Training loss curves of finetuning adapters
with vanilla, and MiMi training on CIFAR-100
dataset.

Figure S4: Training loss curves of finetuning adapters
with vanilla, and MiMi training on SVHN dataset.
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(a) Local pruning: all datasets.
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(b) Global pruning: VGG-Flowers .

5 10 15 20
0

2 0

4 0

6 0

8 0

Adapter index i

Removed

Remaining

N
u

m
be

r 
of

 n
eu

ro
ns

 n
i

Adapter index i

5 10 15 20 5 10 15 20

Adapter index i

(c) Global pruning: CIFAR-10.

Figure S5: Layer-wise analysis of adapter’s neurons distribution at 3rd cycle. Bar plots represent a number
of neurons ni at each adapter i using local, and global neuron selection for VGG-Flowers and CIFAR-10,
respectively.

5 10 15
20

Adapter index i
5 10 15 20

Adapter index i

0

2 0

4 0

6 0

8 0

5 10 15 20

Adapter index i

Removed

Remaining

N
um

be
r 

o
f 

ne
ur

on
s 

n i

(a) Local pruning: all datasets.
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(b) Global pruning: VGG-Flowers.
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(c) Global pruning: CIFAR-10.

Figure S6: Layer-wise analysis of adapter’s neurons distribution at 5th cycle. Bar plots represent the number
of neurons ni at each adapter i using local and global neuron selection for VGG-Flowers and CIFAR-10,
respectively.
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(a) Local pruning: all datasets.
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(b) Global pruning: VGG-Flowers .
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(c) Global pruning: CIFAR-10.

Figure S7: Layer-wise analysis of adapter’s neurons distribution at 3rd cycle. Normalized bar plots repre-
sent percentage (%) of remaining neurons ni at each adapter i using local, global neuron selection for
VGG-Flowers and CIFAR-10, respectively.
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(a) Local pruning: all datasets.
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(b) Global pruning: VGG-Flowers .
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(c) Global pruning: CIFAR-10.

Figure S8: Layer-wise analysis of adapter’s neurons distribution at 5th cycle. Normalized bar plots repre-
sent percentage (%) of remaining neurons ni at each adapter i using local, global neuron selection for
VGG-Flowers and CIFAR-10, respectively.
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1 accuracy on DomainNet benchmark. Reducing
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0 200 400 600 800 1000 1200

0

20

40

60

80

100
0.25

0.5

0.75

0.9

A Performance on VGG-Flowers with various values for p (amount of neurons remo

Epochs

A
c
c
u
r
a
c
y

Figure S10: Analysis of MiMi performance on VGG-
Flowers dataset with different values of ρ. If ρ is very
high, the drop in performance is significant, but it
requires less C training cycles to reach σtraget.



Table S5: Per-task fine-tuning results for VTAB with a pre-trained ViT-B/16. Results for other baselines are reported from [10].
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(a) Full 68.9 87.7 64.3 97.2 86.9 87.4 38.8 75.88 79.7 95.7 84.2 73.9 83.36 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 47.64

Head-oriented

(a)

Linear 63.4 85.0 63.2 97.0 86.3 36.6 51.0 68.93 (1) 78.5 87.5 68.6 74.0 77.16 (1) 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 26.84 (0)
Partial-1 66.8 85.9 62.5 97.3 85.5 37.6 50.6 69.44 (2) 78.6 89.8 72.5 73.3 78.53 (0) 41.5 34.3 33.9 61.0 31.3 32.8 16.3 22.4 34.17 (0)
Mlp-2 63.2 84.8 60.5 97.6 85.9 34.1 47.8 67.70 (2) 74.3 88.8 67.1 73.2 75.86 (0) 45.2 31.6 31.8 55.7 30.9 24.6 16.6 23.3 32.47 (0)
Mlp-3 63.8 84.7 62.3 97.4 84.7 32.5 49.2 67.80 (2) 77.0 88.0 70.2 56.1 72.83 (0) 47.8 32.8 32.3 58.1 12.9 21.2 15.2 24.8 30.62 (0)
Mlp-5 59.3 84.4 59.9 96.1 84.4 30.9 46.8 65.98 (1) 73.7 87.2 64.8 71.5 74.31 (0) 50.8 32.3 31.5 56.4 7.5 20.8 14.4 20.4 29.23 (0)
Mlp-9 53.1 80.5 53.9 95.1 82.6 24.4 43.7 61.90 (1) 78.5 83.0 60.2 72.3 73.49 (0) 47.5 27.9 28.9 54.0 6.2 17.7 10.8 16.2 26.15 (0)

Backbone-oriented

(b)

Sidetune 60.7 60.8 53.6 95.5 66.7 34.9 35.3 58.21 (0) 58.5 87.7 65.2 61.0 68.12 (0) 27.6 22.6 31.3 51.7 8.2 14.4 9.8 21.8 23.41 (0)
Bias 72.8 87.0 59.2 97.5 85.3 59.9 51.4 73.30 (3) 78.7 91.6 72.9 69.8 78.25 (0) 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 44.09 (2)
Adapter-256 74.1 86.1 63.2 97.7 87.0 34.6 50.8 70.50 (4) 76.3 88.0 73.1 70.5 76.98 (0) 45.7 37.4 31.2 53.2 30.3 25.4 13.8 22.1 32.39 (0)
Adapter-64 74.2 85.8 62.7 97.6 87.2 36.3 50.9 70.65 (4) 76.3 87.5 73.7 70.9 77.10 (0) 42.9 39.9 30.4 54.5 31.9 25.6 13.5 21.4 32.51 (0)
Adapter-8 74.2 85.7 62.7 97.8 87.2 36.4 50.7 70.67 (4) 76.9 89.2 73.5 71.6 77.80 (0) 45.2 41.8 31.1 56.4 30.4 24.6 13.2 22.0 33.09 (0)

Visual-Prompt Tuning

(c)

shallow-VPT 77.7 86.9 62.6 97.5 87.3 74.5 51.2 76.81 (4) 78.2 92.0 75.6 72.9 79.66 (0) 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 46.98 (4)
Prompt length (p) 100 5 1 200 50 200 1 79.4 5 50 50 10 28.7 100 200 100 100 100 100 200 200 137.5
Tuned / Total (%) 0.18 0.10 0.04 0.27 0.08 0.19 0.36 0.17 0.01 0.05 0.09 0.01 0.04 0.10 0.18 0.09 0.09 0.10 0.10 0.19 0.19 0.13

deep-VPT 78.8 90.8 65.8 98.0 88.3 78.1 49.6 78.48 81.8 96.1 83.4 68.4 82.43 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 54.98
Prompt length (p) 10 10 10 1 1 50 5 12.4 100 100 10 1 52.8 50 200 100 50 10 50 200 200 107.5
Tuned / Total (%) 0.20 0.20 0.15 0.10 0.04 0.54 0.41 0.23 1.06 1.07 0.15 0.02 0.57 0.54 2.11 1.07 0.54 0.12 0.55 2.12 2.11 1.14

(Ours) MiMi 61.39 86.77 66.65 96.13 90.98 79.3 53.4 76.37 83.06 95.77 85.9 75.51 85.06 62.57 65.77 46.43 74.91 76.58 53.57 24.59 35.91 55.04



S9 Details about Datasets

In Table S6, we report different statistics that cap-
ture the diversity of the datasets we use in our ex-
periments.

Dataset Train Size Test Size Classes

M
u
lt
i-
ta
sk CIFAR-10 50000 10000 10

CIFAR-100 50000 10000 100
Oxford Flowers 2040 6149 102

SVHN 73257 26032 10

D
om

ai
n
N
et

Clipart 33525 14604 345
Infograph 36023 15582 345
Painting 50416 21850 345

Quickdraw 120750 51750 345
Real 120906 52041 345
Sketch 48212 20916 345

Table S6: Datasets used in our empirical analysis
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