
Supplementary material
MonoProb: Self-Supervised Monocular Depth Estimation with Interpretable

Uncertainty

A. Proof that we only need the marginals of the
depth distribution

Let N ∈ N∗
+, D = [D1, ..., DN ] be a multi-variate ran-

dom variable and recons(., I∗s ) a function so that:

recons(., I∗s ) : RN −→ RN×3

d 7→ [recons1(d1, I∗s ), ..., reconsN (dN , I∗s )],

where ∀ i ∈ {1, ..., N} and x ∈ R, reconsi(x, I∗s ) ∈ R3

and η ∈ RN×2.

ED[recons(D, I∗s )|η]

=

∫
D
[recons1(d1, I∗s ), ..., reconsN (dN , I∗s )]pD(d|η)dd

=

[∫
D

recons1(d1, I∗s )pD(d|η)dd, ...,

∫
D

reconsN (dN , I∗s )pD(d|η)dd

]

=

[∫
D

recons1(d1, I∗s )pD1
(d1|η)dd1, ...,

∫
D

reconsN (dN , I∗s )pDN
(dN |η)ddN

]
=[ED1

[recons1(D1, I
∗
s )|η], ...,

EDN
[reconsN (DN , I∗s )|η]].

This shows that the marginals of D are sufficient to com-
pute ED[recons(D, I∗s )|η].

B. Sampling strategy
The MonoProb depth estimator returns a map of HW

univariate depth distributions of parameters η that are inde-
pendently sampled n times so that for each distribution Dk

with k ∈ J1, HW K, the sample set Sk
η accurately represents

the corresponding distributions. Finally, n depth maps of
size HW are obtained. We design our sampling strategy for

families of depth distributions belonging to the symmetric
generalized normal distribution with a density of the form:

f : R → R

x 7→ β

2γΓ(1/β)
exp

(
−(|x− µ|/γ)β

) (1)

where µ is the mean, β is the shape parameter (1 for a
Laplace distribution and 2 for a Gaussian distribution) and
γ is the scale parameter, which can be expressed as a func-
tion of the standard deviation σ (so that γ = σ/

√
2 for the

Laplace distribution and γ =
√
2σ for the Gaussian dis-

tribution). We sample only indices for which the ratio be-
tween their density and the density of the mean f(µ) is in

{ 2i
n+1}

⌊n+1
2 ⌋

i=1 . This results in a set Sk
η of n samples, sym-

metrically and evenly distributed around the mean. These
samples are also controlled to be close enough to the mean
so that their density is not too close to zero and so that at
most one sample only is equal to the mean. Furthermore,
the sampling strategy was chosen because the relationship
between the samples and the parameters of the distribution
Dk facilitates the computation of the backpropagation com-
pared to if we had used quantiles of the distributions. These
samples are:

∀n > 0,Sk
η =

{
s
∣∣∣ f(s)
f(µ)

=
2i

n+ 1

}⌊n+1
2 ⌋

i=1

=

{
s
∣∣∣ exp(−(|s− µ|/γ)β =

2i

n+ 1

}⌊n+1
2 ⌋

i=1

=

{
µ± γ

(
− log

(
2i

n+ 1

)) 1
β

}⌊n+1
2 ⌋

i=1

(2)

In the paper, we carried out experiments with n ∈
{5, 9, 13}. For n = 5, the corresponding sample set Sk

η is:
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Sk
η =

{
µ+ δ

∣∣∣∣∣ δ ∈

{
− γ

(
− log

1

3

) 1
β

,

− γ

(
− log

2

3

) 1
β

,

0,

γ

(
− log

2

3

) 1
β

,

γ

(
− log

1

3

) 1
β

}}
.

(3)

C. Comparison with [2, 4]’s methods
In Tab. 1, we compare our MonoProb methods with and

without self-distillation to all the methods introduced in
[2, 4], including those that require more than one inference
to predict an uncertainty. We provide results for the three
training paradigms that are: monocular video supervision
only (M), stereo supervision only (S), and both monocular
video and stereo supervision (MS). For each method, we re-
port the number of trainings (#Trn) and the number of in-
ferences (#Inf) required to generate the depth and uncer-
tainty at test time. #Inf must not be confused with #Fwd
used in [4], which is the number of forwards required at test
time to estimate the depth only. The results of the concur-
rent methods were taken from [2, 4]. Our new metrics have
been computed using the checkpoints given by [2, 4] and
on methods that provide an interpretable uncertainty as de-
fined in the paper. The results show that our MonoProb and
self-distilled MonoProb methods have similar depth per-
formance to the other approaches. Likewise, our Mono-
Prob without self-distillation provides competitive results in
terms of uncertainty estimation. Our self-distilled Mono-
Prob method shows overall better uncertainty estimation
performance than other approaches. It even compares fa-
vorably with the methods that require more than one infer-
ence to predict uncertainty.

D. Complementary qualitative results
We provide qualitative results on KITTI [3] in Fig. 1

Make3D [5] in Fig. 2 and Nuscenes [1] in Fig. 3.
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Abs Rel RMSE δ < 1.25Sup Methods #Trn #Inf Abs Rel ↓ RMSE ↓ δ < 1.25 ↑ AUSE ↓ AURG↑ AUSE ↓ AURG↑ AUSE ↓ AURG↑ ARU↓ RMSU↓

M [2] 1 1 0.090 3.942 0.914 - - - - - - - -
M [2]-Post 1 2 0.088 3.841 0.917 0.044 0.012 2.864 0.412 0.056 0.022 1.670 17.23
M [4]-Repr 1 1 0.092 3.936 0.912 0.051 0.008 2.972 0.381 0.069 0.013 - -
M [4]-Log 1 1 0.091 4.052 0.910 0.039 0.020 2.562 0.916 0.044 0.038 - -
M [4]-Self 2 1 0.087 3.826 0.920 0.030 0.026 2.009 1.266 0.030 0.045 0.074 3.730
M [4]-Drop 1 8 0.101 4.146 0.892 0.065 0.000 2.568 0.944 0.097 0.002 3.041 33.90
M [4]-Boot 8 8 0.092 3.821 0.911 0.058 0.001 3.982 -0.743 0.084 -0.001 0.791 8.635
M [4]-Snap 1 8 0.091 3.921 0.912 0.059 -0.001 3.979 -0.639 0.083 -0.002 0.361 3.956
M [4]-Boot+Log 8 8 0.092 3.850 0.910 0.038 0.021 2.449 0.820 0.046 0.037 - -
M [4]-Boot+Self 9 8 0.088 3.799 0.918 0.029 0.028 1.924 1.316 0.028 0.049 0.333 3.609
M [4]-Snap+Log 1 8 0.092 3.961 0.911 0.038 0.022 2.385 1.001 0.043 0.039 - -
M [4]-Snap+Self 2 8 0.088 3.832 0.919 0.031 0.026 2.043 1.230 0.030 0.045 0.233 2.554
M Ours 1 1 0.089 3.852 0.914 0.031 0.026 0.719 2.560 0.030 0.050 0.064 2.912
M Ours-self 2 1 0.087 3.762 0.919 0.022 0.034 0.326 2.880 0.014 0.061 0.066 2.969
S [2] 1 1 0.085 3.942 0.912 - - - - - - - -
S [2]-Post 1 2 0.084 3.777 0.915 0.036 0.020 2.523 0.736 0.044 0.034 0.292 3.016
S [4]-Repr 1 1 0.085 3.873 0.913 0.040 0.017 2.275 1.074 0.050 0.030 - -
S [4]-Log 1 1 0.085 3.860 0.915 0.022 0.036 0.938 2.402 0.018 0.061 - -
S [4]-Self 2 1 0.084 3.835 0.915 0.022 0.035 1.679 1.642 0.022 0.056 0.083 3.686
S [4]-Drop 1 8 0.129 4.908 0.819 0.103 -0.029 6.163 -2.169 0.231 -0.080 5.494 61.84
S [4]-Boot 8 8 0.085 3.772 0.914 0.028 0.029 2.291 0.964 0.031 0.048 0.496 5.211
S [4]-Snap 1 8 0.085 3.849 0.912 0.028 0.029 2.252 1.077 0.030 0.051 0.255 2.684
S [4]-Boot+Log 8 8 0.085 3.777 0.913 0.020 0.038 0.807 2.455 0.018 0.063 - -
S [4]-Boot+Self 9 8 0.085 3.793 0.914 0.023 0.035 1.646 1.628 0.021 0.058 0.398 4.288
S [4]-Snap+Log 1 8 0.083 3.833 0.914 0.021 0.037 0.891 2.426 0.018 0.061 - -
S [4]-Snap+Self 2 8 0.086 3.859 0.912 0.023 0.035 1.710 1.623 0.023 0.058 0.282 3.025
S Ours 1 1 0.084 3.834 0.916 0.023 0.033 0.661 2.655 0.023 0.055 0.075 3.540
S Ours-self 2 1 0.084 3.792 0.914 0.018 0.038 0.349 2.924 0.019 0.060 0.072 3.068

MS [2] 1 1 0.084 3.739 0.918 - - - - - - - -
MS [2]-Post 1 2 0.082 3.666 0.919 0.036 0.018 2.498 0.655 0.044 0.031 0.290 2.974
MS [4]-Repr 1 1 0.084 3.828 0.913 0.046 0.010 2.662 0.635 0.062 0.018 - -
MS [4]-Log 1 1 0.083 3.790 0.916 0.028 0.029 1.714 1.562 0.028 0.050 - -
MS [4]-Self 2 1 0.083 3.682 0.919 0.022 0.033 1.654 1.515 0.023 0.052 0.083 3.686
MS [4]-Drop 1 8 0.172 5.885 0.679 0.103 -0.027 7.114 -2.580 0.303 -0.081 5.547 62.54
MS [4]-Boot 8 8 0.086 3.787 0.910 0.028 0.030 2.269 0.985 0.034 0.049 0.564 5.898
MS [4]-Snap 1 8 0.085 3.806 0.914 0.029 0.028 2.245 1.029 0.033 0.047 0.254 2.706
MS [4]-Boot+Log 8 8 0.086 3.771 0.911 0.030 0.028 1.962 1.282 0.032 0.051 - -
MS [4]-Boot+Self 9 8 0.085 3.704 0.915 0.023 0.033 1.688 1.494 0.023 0.056 0.355 3.842
MS [4]-Snap+Log 1 8 0.084 3.828 0.914 0.030 0.027 2.032 1.272 0.032 0.048 - -
MS [4]-Snap+Self 2 8 0.085 3.715 0.916 0.023 0.034 1.684 1.510 0.023 0.055 0.276 2.979
MS Ours 1 1 0.084 3.806 0.915 0.027 0.029 0.840 2.436 0.029 0.049 0.077 3.573
MS Ours-self 2 1 0.082 3.667 0.919 0.016 0.039 0.293 2.859 0.014 0.061 0.078 3.528

Table 1. Results of monocular video supervision only (M), stereo supervision only (S), and both monocular video and stereo supervision
(MS) trainings of our MonoProb methods with and without self-distillation compared to methods that require one or more inferences to
provide an uncertainty estimate.
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Figure 1. Qualitative results of monocular trainings on KITTI [3]. From top to bottom, (1) input image, (2) depth map from [2], (3)
error map from [2], (4) depth map from [4]-Self, (5) uncertainty map from [4]-Self, (6) error map from [4]-Self, (7) depth map from our
MonoProb without self-distillation, (8) uncertainty map from our MonoProb without self-distillation, (9) error map from our MonoProb
without self-distillation, (10) depth map from our self-distilled MonoProb, (11) uncertainty map from our self-distilled MonoProb, (12)
error map from our self-distilled MonoProb.
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Figure 2. Qualitative results of monocular trainings on Make3D [5]. From top to bottom, (1) input image, (2) depth map from [2], (3)
error map from [2], (4) depth map from [4]-Self, (5) uncertainty map from [4]-Self, (6) error map from [4]-Self, (7) depth map from our
MonoProb without self-distillation, (8) uncertainty map from our MonoProb without self-distillation, (9) error map from our MonoProb
without self-distillation, (10) depth map from our self-distilled MonoProb, (11) uncertainty map from our self-distilled MonoProb, (12)
error map from our self-distilled MonoProb.
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Figure 3. Qualitative results of monocular trainings on Nuscenes [1]. From top to bottom, (1) input image, (2) depth map from [2], (3)
depth map from [4]-Self, (4) uncertainty map from [4]-Self, (5) depth map from our MonoProb without self-distillation, (6) uncertainty
map from our MonoProb without self-distillation, (7) depth map from our self-distilled MonoProb, (8) uncertainty map from our self-
distilled MonoProb. We do not provide error maps because the high sparsity of the ground truth makes them unreadable.
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