
A. Additional analysis
A.1. Loss of generalization
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Figure 5. Difference of error for a moderate and a stronger model adaptation corresponding to a learning rate of 10−4 and 10−3, respectively.
The first row examines supervised fine-tuning, while the second row considers diversity-regularized self-training. The right column further
illustrates the effect of adding our weight ensembling approach. All experiments are conducted using an ImageNet pre-trained ResNet-50
that is adapted using 40,000 samples of one of the corruptions from ImageNet-C. The model is then evaluated on the remaining 10,000
samples for all corruptions as well as the source domain. Adapting the model on a potentially narrow distribution can clearly degrade its
generalization capabilities. Adding weight ensembling helps to mitigate the loss of generalization as well as catastrophic forgetting.

Since adapting a model to a target domain effectively means moving the model from its initial source parameterization
to a parameterization that better models the current target distribution, this should trigger a loss of generalization when the
target distribution is narrow. While we have already shown in Section 3 that a generalization loss occurs when performing
self-training in the form of entropy minimization, this should also hold when our certainty and diversity weighting from
Section 4.1 is further added, or when fine-tuning the model in a supervised manner.

To demonstrate the previous points, we adopt the same setup as before, i.e., we use an ImageNet pre-trained ResNet-50 and
adapt the model with 40,000 samples of one of the corruptions from ImageNet-C. Afterwards, the model is evaluated for each



corruption and the source domain on the remaining 10,000 samples. Figure 5 illustrates the difference of error for a moderate
and a stronger adapted model, corresponding to a learning rate of 10−4 and 10−3, respectively. Depending on the investigated
corruption, not only fine-tuning but also diversity-regularized self-training result in an increased error on other corruptions,
indicating a loss of generalization. This demonstrates the risks of model adaptation in a potentially unknown environment.
Using our proposed weight ensembling, a loss of generalization and catastrophic forgetting can mostly be mitigated.

A.2. Model bias and trivial solutions

As stated in Section 3, a critical factor for successful TTA is stability. Current methods for online TTA mostly leverage
self-training to adapt the model to the current domain shift, showing great performance on short test sequences [5, 34, 51, 53].
However, if self-training is utilized without any proper regularization, the model is likely to become biased after a while. In
the worst case, the bias can even evolve into a trivial solution, where the model only predicts a small subset of classes. In this
section, we first demonstrate the aforementioned points for TENT, which exploits entropy minimization for model adaptation.
Then, we investigate the behaviour of current state-of-the-art methods, revealing some inefficiencies to effectively counter
model bias during test-time.

Long test sequences promote model bias and domain shifts can trigger trivial solutions To investigate whether the
model is becoming biased or degrades to a trivial solution during the adaptation, we consider the total variation distance
(TVD). It measures the deviation between the actual class prior and the predicted prior. The TVD is defined as

dTV(p, p̂) =
1

2

C∑
i=1

|pi − p̂i|, (7)

where pi and p̂i are the true and predicted prior probability for class i, respectively. If the TVD is calculated along the
test sequence, it can also indirectly show the occurrence of error accumulation, since it is a lower bound of the error of the
pseudo-labels [21]. Since TENT reports good results for adapting a model to a single domain, we begin our analysis with
the same setting and only vary the length of the test sequence by repeating each domain several times. Specifically, we use
ImageNet-C with 50,000 samples per corruption and CIFAR100-C with 10,000 samples per corruption (both at severity
level 5). Following TENT, we utilize a ResNet-50 with a learning rate lr = 2.5e−4 for ImageNet-C and a ResNeXt-29 with
lr = 0.001 for CIFAR100-C. As shown on the left side of Figure 6, TENT quickly deteriorates to a trivial solution for half of
the corruptions of ImageNet-C, while developing a growing bias for the other half. In case of CIFAR100-C, TENT initially
deteriorates slightly but then remains stable for most of the corruptions. To study the impact of multiple domain shifts, which
is a quite common setting in practice, we leverage all 15 corruption types and create 15 randomly ordered domain sequences.
The results for this setting, including different learning rates, are depicted in the middle of Figure 6. Since the TVD now
steadily increases in all settings, it becomes clear that domain shifts can explicitly enhance model bias and lead to trivial
solutions. If the domain non-stationarity is further increased to its maximum, where consecutive test samples are likely to
originate from different domains, the TVD increases even more rapidly (right side of Figure 6). Now, by equipping TENT
with our certainty and diversity based loss weighting, stable adaptation across all previously considered settings and a wider
range of learning rates is possible. The only exception to this is ImageNet-C in the mixed domains TTA setting with a learning
rate four times higher than the default. This clearly demonstrates that maintaining diversity is crucial in TTA.

Many state-of-the-art methods lack diversity In Figures 7 and 8, we investigate existing TTA methods and our proposed
method, namely ROID, in terms of diversity on the continual ImageNet-C benchmark with 50,000 samples per corruption.
Figure 7 provides a visual representation of online batch predictions across the entire continual sequence, illustrating the
impact on diversity over time and the influence by different domain shifts. Figure 8 depicts the histogram over the predicted
classes for the last corruption (JPEG) after adapting the model on the complete continual sequence.

Beginning with BN–1, we observe variations in the degree of model bias induced by different domain shifts. Corruptions
where the performance of BN–1 is relatively bad, tend to show a higher model bias. Looking at TENT, a collapse can be
seen after a few corruptions, resulting in predicting only a small subset of the 1,000 classes. AdaContrast also strongly lacks
diversity after few corruptions. Since LAME solely corrects the model output without updating the model’s parameters,
the diversity of its predictions heavily relies on the specific type of domain shift. Although LAME maintains diversity for
certain corruptions, such as brightness, it collapses for the majority. RoTTA shows the behavior whereby diversity temporarily
diminishes for specific domain shifts, such as the transition from impulse noise to defocus blur and brightness to contrast.
This behavior can likely be attributed to its robust batch normalization, which incorporates past statistics, resulting in bad



statistics when past statistics differ from current ones. While SAR demonstrates better diversity than CoTTA and RMT, it
still manifests a deficiency in diversity, evident, for example, in the predictions for the final corruption, where a strong bias
towards a few classes exists. On the other hand, EATA and ROID with their diversity weighting effectively preserve diversity
throughout the adaptation process.
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Figure 6. Illustration of the total variation distance of TENT on CIFAR100-C and ImageNet-C at severity level 5 without (first row) and with
(second row) our loss weighting. The model is adapted to a single domain (left), in the continual setting (middle) using 15 randomly ordered
domain sequences, and the mixed domains setting (right). Unless otherwise stated, TENT’s default learning rates of 1.0e−3 and 2.5e−4 are
used. Comparing the left and middle column of CIFAR100-C, it becomes obvious that domain shifts can promote the occurrence of trivial
solutions. In case of mixed domains, model bias and trivial solutions occur even faster for both datasets. In contrast, using TENT with our
loss weighting prevents the model from becoming biased in almost all settings.



Figure 7. Illustration of the batch-wise predictions in the continual TTA setting using a ResNet-50 and ImageNet-C with 50,000 samples per
corruption.



0

50

100

150

200

BN-1

0

200

400

600

800

1000

1200

RoTTA

0

1000

2000

3000

4000

5000

6000

TENT

0

500

1000

1500

2000

2500
AdaContrast

0

25

50

75

100

125

EATA

0

200

400

600

800

1000

1200

RMT

0

200

400

600

SAR

0

2000

4000

6000

8000

10000

12000
LAME

0 200 400 600 800 1000
0

500

1000

1500

CoTTA

0 200 400 600 800 1000
0

20

40

60

80

100

ROID

Predicted class

Fr
eq

ue
nc

y

Figure 8. Frequency of the ResNet-50’s predictions of the last corruption (JPEG) over the continual TTA sequence using 50,000 samples per
corruption.



B. Ablation studies
B.1. Architectures

Table 5. Online classification error rate (%) for the ImageNet benchmarks in the continual TTA setting. Common architectures and their
variations are considered.

Inception ResNet ResNeXt WideResNet DenseNet RegNetY
v1 v3 18 50 101 152 50-32x4d 101-32x8d 50 101 121 169 201 8gf 32gf

GFLOPs 2 6 1.8 3.8 7.6 11.3 4.2 8.0 - 23 5.7 6.8 8.6 8.0 32.3
MParams 6.6 27 12 25 44 60 25 44 69 127 8.0 14 20 39 145

IN Source 30.2 22.7 30.2 23.9 22.6 21.7 22.4 20.7 21.5 21.2 25.6 24.4 23.1 20.0 19.1

IN
-C

Source 81.7 76.5 85.3 82.0 77.4 77.6 78.9 75.2 78.9 75.3 78.6 75.7 75.5 78.4 75.9
BN–1 70.3 69.6 72.7 68.6 66.3 65.9 67.1 64.1 66.0 65.6 68.2 63.7 63.5 67.7 64.4
ROID 67.8 64.2 62.2 54.5 50.4 49.2 50.9 46.6 50.7 49.0 55.8 51.2 50.6 50.9 46.4

IN
-R

Source 63.8 62.2 67.0 63.8 60.7 58.7 62.3 57.4 61.4 59.6 62.8 60.4 59.2 60.0 57.9
BN–1 61.5 63.9 65.1 60.3 57.7 56.1 59.3 56.2 59.1 58.3 59.8 57.0 57.3 59.5 57.0
ROID 59.9 59.9 59.6 51.2 46.4 43.9 48.3 42.0 46.9 44.9 50.9 47.7 46.7 49.2 42.9

IN
-S

k. Source 76.9 73.4 79.8 75.9 73.0 71.5 74.5 70.6 74.7 71.9 75.8 72.7 72.3 73.2 71.6
BN–1 74.6 75.0 77.8 73.6 72.3 70.9 73.4 69.2 75.3 74.7 75.1 71.9 72.1 74.8 69.3
ROID 73.3 71.1 71.5 64.0 61.2 59.2 62.1 57.3 61.9 60.6 66.0 62.2 61.4 62.3 56.6

IN
-D

10
9 Source 60.7 58.5 61.8 58.8 56.1 55.1 57.4 54.1 57.2 55.3 58.3 56.2 55.5 55.4 53.7

BN–1 58.0 60.5 59.4 55.1 53.7 52.4 54.7 51.7 56.2 55.6 56.0 53.7 54.2 55.6 52.6
ROID 56.5 57.4 54.6 47.9 46.1 44.0 46.3 43.6 46.5 45.0 48.5 46.5 46.1 47.3 43.2

Table 6. Online classification error rate (%) for the ImageNet benchmarks in the continual TTA setting. Mobile and transformer architectures
and their variations are considered (tiny, small, base).

MobileNet RegNetX RegNetY Swin Swin v2 ViT MaxViT
v2 v3-s v3-l 400mf 800mf 400mf 800mf t s b t s b b-16 b-32 t

GFLOPs 0.30 0.06 0.22 0.40 0.80 0.40 0.80 4.5 8.7 15.4 5.9 11.5 20.3 16.9 - 5.6
MParams 3.4 2.5 5.4 5.2 7.3 4.3 6.3 29 50 88 28 50 88 86 88 31

IN Source 28.1 32.3 26.0 27.2 24.8 26.0 23.6 18.5 16.8 16.4 17.9 16.3 15.9 18.9 24.1 16.3

IN
-C

Source 86.7 83.5 82.5 84.5 84.0 83.3 80.6 70.5 63.7 64.0 71.7 65.2 64.2 60.2 61.6 54.9
BN–1 77.2 74.7 73.0 73.7 72.4 73.2 70.0 - - - - - - - - 53.4
ROID 66.0 67.7 64.2 63.8 61.6 63.9 59.6 52.9 48.8 46.8 54.8 47.8 47.5 44.9 52.0 40.0

IN
-R

Source 69.0 70.7 65.4 66.4 65.9 67.0 64.5 58.7 55.3 54.3 60.0 55.9 54.8 56.0 58.2 50.6
BN–1 67.8 71.7 66.5 65.9 64.4 67.1 63.9 - - - - - - - - 49.0
ROID 62.0 69.0 63.3 60.8 58.9 62.9 59.1 50.7 46.6 45.8 50.0 44.4 44.4 44.2 46.8 38.5

IN
-S

k. Source 80.9 81.6 76.4 78.7 78.1 79.6 77.7 72.8 69.0 68.5 74.0 69.4 69.3 70.6 72.2 65.1
BN–1 81.4 86.9 82.0 80.4 79.2 81.8 79.5 - - - - - - - - 67.0
ROID 74.2 83.8 77.6 75.6 73.1 76.5 74.0 63.5 59.6 58.6 64.0 58.9 58.7 58.6 59.9 55.2

IN
-D

10
9 Source 62.5 63.5 59.5 60.0 59.4 60.1 58.6 54.3 51.8 51.4 55.2 51.8 51.5 53.6 55.9 49.4

BN–1 60.6 66.0 61.8 60.8 59.6 62.1 59.9 - - - - - - - - 48.8
ROID 55.1 62.6 58.6 55.6 54.4 57.8 55.1 48.1 45.6 45.0 48.6 45.0 44.3 45.0 47.1 41.9

To demonstrate that our proposed method ROID is largely model-agnostic, we evaluate our method in the continual TTA
setting on 31 different architectures. In Table 5, we report our results on regular architectures. In Table 6, mobile architectures
and transformers are considered on the left and right, respectively. All results worse than the source performance are highlighted
in red. While test-time normalization (BN–1) can decrease the error for corruptions (IN-C) on all considered architectures, this
is not the case for natural shifts (IN-R, IN-Sketch, IN-D109). Especially for mobile architectures, Inception-v3, and RegNets,



the error rate even increases. Since ROID applies test-time normalization, it works particularly well when a good estimation of
the batch statistics is possible during test-time. ROID always outperforms BN–1, but due to the bad estimation of the batch
statistics of MobileNet-v3 on ImageNet-Sketch, improvement upon the source performance is not possible. Nevertheless,
in general, ROID can significantly outperform the source model, demonstrating its applicability to a wide range of different
architectures. Among all networks, MaxViT-tiny, a hybrid (CNN + ViT) model, performs best on all ImageNet benchmarks.
Regarding the considered CNN architectures, ResNeXt-101-32x8d and RegNetY-32gf show the best overall results.

B.2. Catastrophic Forgetting

In Figure 9, we investigate the occurrence of catastrophic forgetting [27] for CoTTA [53], EATA [33], and ROID on the
long continual ImageNet-C sequence (50,000 samples per corruption). Following [33], we adapt the model on an alternating
sequence of corrupted data and source data, i.e., [Gaussian, Source, Shot, Source, ...], using the complete ImageNet validation
set (50,000 samples) as Source. Note that this procedure is different compared to how catastrophic forgetting is measured
within the field of continual learning. However, in TTA, where the model is continually adapted to an unknown domain, this is
the more realistic setting. Clearly, CoTTA suffers from major catastrophic forgetting, as the source error steadily increases
after each corruption. By using elastic weight consolidation, EATA can largely prevent forgetting. However, to perform elastic
weight consolidation, EATA requires data from the initial source domain, which may be unavailable in practice. Our proposed
method ROID, which utilizes weight ensembling, is even more effective than EATA and only requires the initial parameters
of the normalization layers. ROID is capable of nearly recovering the performance of the initial source model on the source
domain.
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Figure 9. Source and adaptation error of ROID, EATA, and CoTTA for ImageNet-C (50,000 samples per domain) in the continual TTA
setting with an alternating domain sequence. The dashed line indicates the lower bound (source error of the source model).

B.3. Momentum for Weight Ensembling

In Table 7, we analyze the sensitivity with respect to the momentum α used for our weight ensembling. ResNet-50,
Swin-b, and ViT-b-16 are evaluated on the continual ImageNet-C benchmark. Choosing a relatively low momentum α = 0.9,
corresponding to only ”keeping” 90% of the current model and adding 10% of the weights of the initial source model,
limits adaptation. In the interval α ∈ [0.99, 0.9975], a decent compromise between allowing adaptation and remaining good
generalization from the source model is possible. For large momentum values α ≥ 0.999 the advantages of weight ensembling
vanish, resulting in an increase of adaptation error for all architectures.

B.4. Computational Efficiency

Since efficiency is also of great importance for a method performing its adaptation during test-time, we study in Table 8
the efficiency of each method with respect to the number of required forward and backward propagations, as well as the
number of trainable parameters. We conduct the analysis on ImageNet-R using a ResNet-50. Clearly, the most inefficient
methods are CoTTA, RMT, and AdaContrast which do not only require three and four times as many forward passes, but
also calculate the gradients with respect to all parameters. While RoTTA also performs three forward passes per test sample,



Table 7. Online classification error rate (%) for ImageNet-C at the highest severity level 5 in the continual TTA setting. Different momentum
values used for weight ensembling are considered for our approach. Note that we omitted prior correction and LSCE for a clearer analysis.

Model
α

0.99975 0.9995 0.999 0.9975 0.995 0.99 0.95 0.9

ResNet-50 60.1 58.9 58.4 57.0 56.3 56.1 60.0 63.0
Swin-b 53.4 52.4 51.9 50.8 50.1 49.7 53.4 57.0
ViT-b-16 47.9 47.8 47.4 46.7 46.7 47.0 51.8 55.3

significantly less parameters are trained and the number of backward propagations is not increased. The most efficient method
during adaptation is EATA. Compared to the second most efficient method, TENT, fewer backward passes are required as
some samples are filtered out. Due to performing consistency regularization, ROID is slightly less efficient than TENT and
EATA, but comparable to SAR. Note that the additional 2000 forward and backward passes required to calculate the Fisher
information matrix in EATA are not included in Table 8.

Table 8. Efficiency analysis for adapting a ResNet-50 on ImageNet-R.

Method Error (%) #Forwards #Backwards Train. Params (%)

Source 63.8 30,000 - -
BN–1 60.3 30,000 - -
LAME 99.4 30,000 - -
TENT-cont. 57.4 30,000 30,000 0.21
EATA 54.2 30,000 5,440 0.21
SAR 57.2 46,279 30,111 0.12
CoTTA 57.4 90,000 30,000 100
RoTTA 60.8 90,000 30,000 0.21
AdaContrast 59.1 120,000 60,000 100
RMT 55.9 90,000 60,000 100
ROID (ours) 51.3 48,610 37,220 0.21

B.5. Memory Efficiency

Another huge advantage of architectures based on group or layer normalization is their potential to recover the batch TTA
setting from a single sample scenario by leveraging gradient accumulation. This approach has the additional benefit that it
significantly reduces the amount of required memory, which can be a scarce when TTA is performed on an edge device. In
Table 9, the allocated memory for the batch and single sample setting is compared. Using gradient accumulation with TENT
and ViT-b-16 reduces the maximum GPU memory consumption by 14.5 times while providing the same results. In case of
ROID, the reduction factor is 15.8. If Swin-b is used as a model, the memory reduction factors are even larger.

Table 9. Memory efficiency analysis for TENT-cont. and ROID when adapting either Swin-b or ViT-b-16 on ImageNet-R.

Method Architecture Batch Size Error (%) Max. GPU mem. allocated
TENT-cont. Swin-b 64 54.2 9.20 GB
TENT-cont. Swin-b 1 54.3 0.50 GB
TENT-cont. ViT-b-16 64 53.3 6.36 GB
TENT-cont. ViT-b-16 1 53.3 0.44 GB
ROID (ours) Swin-b 64 45.8 15.92 GB
ROID (ours) Swin-b 1 45.8 0.71 GB
ROID (ours) ViT-b-16 64 44.2 10.90 GB
ROID (ours) ViT-b-16 1 44.1 0.69 GB



B.6. Component Analysis

In the following we elaborate and extend the component analysis from the main paper. Detailed results for the continual
and mixed-domains setting are presented in Table 17 and for the correlated and mixed-domains correlated setting in Table 18.
To adapt a model to the entire spectrum of Universal TTA, the most important aspect is to have a stable method. This factor
isn’t solely crucial for a specific scenario in TTA but resonates across all settings. As our analysis in Sec. 3 and Appendix A.2
suggests, even in the easiest setting (continual) it is essential to prevent the model from developing a bias or worse, collapsing
to a trivial solution during test-time. A non-stationary setting, such as mixed-domains, can further enhance a model bias and
degrade performance. To circumvent this, diversity weighting is essential. This is also supported by our component analysis
which demonstrates that the driving factor in the continual and mixed-domains setting is diversity and certainty weighting.

To effectively address the challenge of dealing with multiple domain shifts over time, we employ weight ensembling
(WE). WE retains generalization and still enables a good adaptation, as demonstrated in Sec. 3. It should be underscored
that this is only necessary when a model adapts to a narrow distribution, potentially leading to overfitting on the current
domain. In the context of mixed-domains, where samples from different domains are encountered within a single batch,
adapting to such a broad distribution is also possible without WE. This is demonstrated by our component analysis, where WE
improves the performance where multiple domain shifts are encountered, but actually slightly degrades the performance in the
mixed-domains setting (broad distribution). Note that also for ImageNet-R and ImageNet-Sketch the best performance in
the continual setting is achieved for configuration B, since here we only adapt to a single domain and do not encounter any
additional domain shifts where generalization would be of importance. Nevertheless, the concept of WE carries the added
benefit of enhancing overall stability. It serves as a corrective measure, capable of rectifying suboptimal adaptations over time,
by continually incorporating a small percentage of the source weights. This becomes visible for the difficult adaptation in
correlated settings, where highly imbalanced data can hinder a stable adaptation process. Here, WE ensembling ensures a
stable adaptation process.

Shifting our focus to the correlated setting, the role of prior correction is substantial. Weighting the network’s outputs with
a smoothed estimate of the label prior benefits in settings with highly imbalanced data. Uncertain data points can be corrected
by taking prior label information into account, while not degrading performance when a uniform label distribution is present.

Taking a look at employing consistency through data augmentation, the component analysis shows that it is beneficial
across all settings and datasets. Compared to the other components, encouraging the invariance to small changes in the input
space, has a moderate benefit.



C. Detailed Results

Table 10. Online classification error rate (%) for different settings using the ImageNet-D109 dataset. We report the performance of each
method averaged over 5 runs. We do not report the results for ResNet-50 in the correlated setting, since BN–1 already achieves an error of
92.8%.

Setting continual correlated mixed domains
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Source 64.2 81.0 51.5 24.2 73.2 58.8 64.2 81.0 51.5 24.2 73.2 58.8 64.2 81.0 51.5 24.2 73.2 58.8
BN–1 55.7 80.1 50.1 25.1 64.8 55.1±0.05 92.4 93.2 91.9 92.7 94.0 92.8±0.05 58.3 78.6 51.7 26.0 66.6 56.2±0.03
TENT-c. 53.5 78.1 47.9 24.8 60.3 52.9±0.05 - - - - - - 57.8 81.7 50.1 25.3 65.7 56.1±0.15
EATA 51.8 76.7 47.6 24.0 57.8 51.6±0.21 - - - - - - 54.2 78.4 49.3 24.3 60.5 53.3±0.3
SAR 53.9 77.6 47.3 24.4 58.1 52.2±0.07 - - - - - - 55.2 77.5 49.1 24.8 61.9 53.7±0.05
CoTTA 53.7 77.4 46.2 23.1 53.5 50.8±0.07 - - - - - - 50.4 75.5 44.7 23.0 57.9 50.3±0.12
RoTTA 55.3 77.7 47.6 23.5 57.5 52.3±0.04 - - - - - - 56.9 77.7 47.5 23.6 64.3 54.0±0.18
AdaCont. 49.7 78.0 46.2 23.8 54.4 50.4±0.17 - - - - - - 56.2 83.2 49.0 24.6 64.0 55.4±0.12
RMT 49.1 75.2 45.3 25.2 52.2 49.4±0.06 - - - - - - 49.9 76.8 45.4 24.5 56.8 50.7±0.23
LAME 99.1 99.4 97.8 29.6 99.2 85.0±0.12 - - - - - - 99.0 99.6 98.7 98.8 99.2 99.1±0.02
ROID 45.9 74.2 44.6 23.1 52.3 48.0±0.06 - - - - - - 51.0 75.8 46.7 23.7 57.3 50.9±0.04

Sw
in

-b

Source 53.6 73.6 44.0 20.3 65.3 51.4 53.6 73.6 44.0 20.3 65.3 51.4±0.0 53.6 73.6 44.0 20.3 65.3 51.4
TENT-c. 53.5 80.0 59.2 42.2 95.4 66.1±0.69 53.8 80.1 60.5 49.7 98.3 68.5±0.29 66.9 83.9 55.4 24.8 76.4 61.5±0.42
EATA 51.2 70.5 41.0 19.2 55.5 47.5±0.14 52.4 71.2 45.8 29.5 70.7 53.9±1.18 50.3 71.9 41.8 19.6 60.7 48.9±0.12
SAR 52.2 78.5 52.0 20.4 67.7 54.2±0.62 61.3 77.7 49.3 20.2 68.9 55.5±0.25 56.7 78.3 46.4 21.2 67.3 54.0±0.14
CoTTA 53.2 74.0 42.3 19.9 60.0 49.9±0.18 55.7 80.6 54.5 32.1 69.8 58.5±10.7 51.6 72.5 41.1 19.5 62.2 49.4±0.23
RoTTA 52.7 72.3 41.0 19.5 57.8 48.7±0.03 53.2 73.0 42.5 20.1 63.6 50.5±0.07 49.4 70.9 40.6 19.6 60.2 48.1±0.10
AdaCont. 48.2 73.9 40.2 18.6 55.8 47.3±0.08 53.2 77.5 43.8 19.9 66.4 52.1±0.11 49.8 77.3 40.4 19.0 60.8 49.4±0.15
RMT 48.3 73.5 39.4 19.4 57.7 47.6±0.44 51.9 79.2 42.3 21.4 64.8 51.9±1.97 46.7 71.9 38.1 19.0 56.6 46.5±0.13
LAME 98.7 99.6 96.5 37.3 99.6 86.3±0.24 27.8 62.3 18.0 7.7 36.3 30.4±0.27 97.3 98.7 96.8 95.8 98.1 97.3±0.07
ROID 46.1 67.7 39.8 19.7 52.2 45.1±0.10 27.8 53.9 24.1 10.5 36.8 30.6±0.16 48.2 69.9 40.6 19.6 57.7 47.2±0.07

V
iT

-b
-1

6

Source 57.5 75.9 45.1 22.0 67.5 53.6 57.5 75.9 45.1 22.0 67.5 53.6 57.5 75.9 45.1 22.0 67.5 53.6
TENT-c. 58.1 86.5 82.0 94.5 99.2 84.0±0.09 59.0 86.4 82.3 94.7 99.2 84.3±0.03 82.1 91.0 74.0 48.0 88.5 76.7±0.22
EATA 53.4 70.2 40.8 20.3 52.5 47.4±0.12 54.5 70.8 45.1 36.3 80.1 57.4±2.24 50.9 71.7 41.5 20.5 58.5 48.6±0.10
SAR 57.5 83.2 50.9 21.2 74.1 57.4±0.64 64.4 81.2 53.0 21.4 73.7 58.7±0.17 67.0 83.0 54.4 26.0 76.7 61.4±0.20
CoTTA 80.2 89.8 68.2 40.9 87.6 73.4±6.28 86.2 96.6 90.8 93.1 99.0 93.1±6.09 66.4 80.5 45.3 22.7 75.2 58.0±0.51
RoTTA 56.7 74.4 42.8 20.8 61.2 51.2±0.03 57.4 75.5 44.6 22.4 69.0 53.8±0.04 53.2 73.1 42.1 21.0 62.9 50.5±0.06
AdaCont. 51.5 76.8 41.4 19.9 59.0 49.7±0.11 59.4 81.1 47.2 21.8 74.1 56.7±0.12 53.1 79.6 41.8 20.0 62.5 51.4±0.12
RMT 82.5 90.4 66.0 45.0 87.2 74.2±14.0 84.2 97.6 90.7 82.5 98.0 90.6±10.3 75.8 87.6 61.4 44.4 84.6 70.8±14.4
LAME 99.0 99.6 96.3 45.7 99.2 88.0±0.18 31.0 75.2 18.6 9.4 43.0 35.4±0.32 98.8 99.5 98.4 98.3 99.0 98.8±0.03
ROID 46.2 68.2 39.9 20.5 50.2 45.0±0.04 30.2 55.7 24.7 10.9 36.9 31.7±0.08 48.6 69.7 40.6 20.5 55.2 46.9±0.02

Table 11. Online classification error rate (%) for ImageNet-D109 for the mixed domains correlated TTA setting with Dirichlet concentration
parameter δ = 0.1. We report the performance of each method averaged over 5 runs.
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Source 53.6 73.6 44.0 20.3 65.3 51.4
SAR 56.4 78.0 46.5 21.2 67.4 53.9±0.52
LAME 26.6 25.9 30.8 28.2 28.3 28.0±0.39
ROID 25.5 47.0 24.0 12.4 32.6 28.3±0.19

V
iT

-b
-1

6 Source 57.5 75.9 45.1 22.0 67.5 53.6
SAR 66.3 82.4 53.6 25.5 76.4 60.8±0.48
LAME 27.6 27.3 32.2 29.6 29.4 29.2±0.55
ROID 28.0 47.8 24.7 12.8 33.8 29.4±0.13



Table 12. Online classification error rate (%) for the corruption benchmarks at the highest severity level 5 for the continual TTA setting. For
CIFAR10-C the results are evaluated on WideResNet-28, for CIFAR100-C on ResNeXt-29, and for Imagenet-C, ResNet-50, Swin-b and
ViT-b-16 are used. We report the performance of each method averaged over 5 runs.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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Source 72.3 65.7 72.9 47.0 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.4 30.3 43.5
BN–1 28.3 26.2 36.2 12.7 35.1 13.9 12.2 17.5 17.7 15.0 8.3 13.0 23.6 19.7 27.4 20.4±0.07
TENT-cont. 25.0 20.3 29.0 13.8 31.7 16.2 14.1 18.6 17.6 17.4 10.8 15.6 24.3 19.7 25.1 20.0±1.19
EATA 24.6 19.1 27.7 12.8 29.4 14.5 12.1 16.3 15.8 15.2 9.3 13.0 21.6 16.1 20.8 17.9±0.15
SAR 28.3 26.2 35.6 12.7 34.7 13.9 12.2 17.5 17.7 15.0 8.3 13.0 23.6 19.7 27.4 20.4±0.06
CoTTA 24.2 21.9 26.5 12.0 27.9 12.7 10.7 15.2 14.6 12.8 7.9 11.2 18.5 14.0 18.1 16.5±0.16
RoTTA 30.3 25.4 34.6 18.3 34.0 14.7 11.0 16.4 14.6 14.0 8.0 12.4 20.3 16.8 19.4 19.3±0.07
AdaContrast 29.2 22.5 29.9 13.9 32.8 14.2 11.8 16.6 15.0 14.3 8.0 10.0 21.7 17.7 19.9 18.5±0.04
RMT 24.1 20.2 25.7 13.2 25.5 14.7 12.8 16.2 15.4 14.6 10.8 14.0 18.0 14.1 16.6 17.0±0.34
LAME 86.0 83.9 88.4 83.6 88.7 64.4 82.0 28.4 71.7 37.1 9.4 74.1 41.3 79.7 46.3 64.3±0.18
ROID (ours) 23.7 18.7 26.4 11.5 28.1 12.4 10.1 14.7 14.3 12.0 7.5 9.3 19.8 14.5 20.3 16.2±0.05

C
IF

A
R

10
0-

C

Source 73.0 68.0 39.4 29.4 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4
BN–1 42.3 40.7 43.2 27.7 41.8 29.8 27.9 35.0 34.7 41.8 26.4 30.2 35.6 33.1 41.2 35.4±0.03
TENT-cont. 37.3 35.6 41.6 37.9 51.3 48.1 48.9 59.8 65.3 73.6 74.2 85.7 89.1 91.1 93.7 62.2±2.17
EATA 37.2 33.1 36.0 27.8 37.6 29.6 27.0 32.6 31.5 35.2 26.6 29.1 33.4 29.6 37.5 32.2±0.10
SAR 40.4 34.8 37.1 26.0 37.1 28.0 25.6 31.9 30.8 35.9 25.3 28.1 32.0 29.2 37.3 32.0±0.10
CoTTA 40.5 38.2 39.8 27.2 38.2 28.4 26.4 33.4 32.2 40.6 25.2 27.0 32.4 28.4 33.8 32.8±0.07
RoTTA 49.1 44.9 45.5 30.2 42.7 29.5 26.1 32.2 30.7 37.5 24.7 29.1 32.6 30.4 36.7 34.8±0.15
AdaContrast 42.5 36.9 38.5 27.7 40.4 29.3 27.4 32.8 30.7 38.0 26.1 28.4 34.1 33.4 36.1 33.5±0.08
RMT 40.2 36.2 36.0 27.9 33.9 28.4 26.4 28.7 28.8 31.1 25.5 27.1 28.0 26.6 29.0 30.2±0.15
LAME 98.9 99.0 98.2 98.1 98.8 98.1 98.0 98.2 98.8 98.9 98.0 98.9 98.1 99.0 98.4 98.5±0.05
ROID (ours) 36.5 31.9 33.2 24.9 34.9 26.8 24.3 28.9 28.5 31.1 22.8 24.2 30.7 26.5 34.4 29.3±0.04
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0)

Source 97.8 97.1 98.2 81.7 89.8 85.2 78.0 83.5 77.0 75.9 41.3 94.5 82.5 79.3 68.5 82.0
BN–1 84.9 84.0 84.8 84.9 84.5 73.3 61.1 65.8 68.2 51.9 35.0 83.0 56.3 51.2 60.0 68.6±0.06
TENT-cont. 81.7 74.6 72.6 77.6 73.8 66.1 55.7 61.5 63.1 51.3 38.0 71.8 51.0 47.5 52.9 62.6±0.11
EATA 76.3 66.5 65.0 73.1 69.1 62.1 53.5 58.9 59.3 48.1 35.9 62.8 47.5 43.9 47.5 58.0±0.18
SAR 81.8 74.1 71.4 77.8 73.4 65.8 56.0 61.4 62.3 51.0 37.3 69.4 49.7 46.1 50.9 61.9±0.20
CoTTA 84.5 82.0 80.4 81.8 79.5 69.2 58.8 60.8 61.1 48.5 36.5 67.5 47.8 41.8 45.9 63.1±0.45
RoTTA 88.3 82.8 82.1 91.3 83.7 72.9 59.4 66.2 64.3 53.3 35.6 74.5 54.3 48.2 52.6 67.3±0.25
AdaContrast 83.0 80.6 78.7 82.4 78.8 72.5 63.5 63.5 64.0 53.2 38.7 67.0 54.3 49.7 53.2 65.5±0.18
RMT 79.9 76.3 73.1 75.7 72.9 64.7 56.8 56.4 58.3 49.0 40.6 58.2 47.8 43.7 44.8 59.9±0.21
LAME 99.9 99.9 99.9 83.6 99.8 99.8 96.7 99.9 98.7 99.8 41.6 99.7 99.9 98.3 84.3 93.5±0.12
ROID (ours) 71.7 62.2 62.2 69.6 66.5 57.1 49.3 52.3 57.4 43.5 33.4 59.1 45.4 41.8 46.2 54.5±0.10

Im
ag

eN
et

-C
(S

w
in

-b
)

Source 71.1 70.0 75.4 72.8 81.6 63.8 68.2 57.9 50.8 40.7 28.6 60.5 72.1 86.6 59.3 64.0
TENT-cont. 67.0 62.0 63.5 79.2 78.6 65.3 67.3 59.1 55.7 52.0 32.5 62.9 73.4 82.6 59.3 64.0±0.15
EATA 63.1 55.5 54.7 67.4 64.0 54.1 54.5 52.4 46.8 44.4 26.1 47.0 55.0 61.0 46.2 52.8±0.14
SAR 63.6 57.4 58.1 75.7 73.5 65.7 65.0 60.9 59.4 57.7 31.2 72.4 71.9 81.1 62.4 63.7±1.23
CoTTA 63.8 58.4 58.3 76.2 73.9 65.1 69.3 62.1 52.4 50.5 35.3 51.8 61.2 60.6 50.0 59.3±1.23
RoTTA 71.0 69.0 73.1 72.9 79.7 62.0 66.8 56.1 48.0 42.2 28.7 56.7 68.1 88.1 57.8 62.7±0.10
AdaContrast 63.3 60.1 59.9 72.6 81.1 65.6 67.4 54.7 46.3 51.3 27.3 47.8 64.5 60.4 49.4 58.1±0.11
RMT 60.4 52.6 52.5 74.8 68.3 58.0 61.8 52.0 48.2 42.9 33.4 49.6 50.8 41.6 42.9 52.6±1.00
LAME 88.6 76.5 87.5 84.3 97.5 86.6 80.3 99.6 99.4 96.8 28.8 90.0 99.7 95.1 61.8 84.8±0.29
ROID (ours) 58.0 51.6 51.4 62.9 57.6 49.9 47.5 44.2 39.9 36.2 24.2 43.9 44.5 50.4 42.5 47.0±0.26
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Source 65.8 67.3 65.3 68.8 74.4 64.3 66.6 56.8 45.2 48.6 29.2 81.8 57.1 60.8 50.2 60.2
TENT-cont. 63.6 59.8 58.0 65.8 68.2 58.0 61.4 53.9 45.4 47.9 28.2 61.2 53.5 50.8 42.4 54.5±0.04
EATA 61.5 55.3 53.7 60.2 58.7 52.6 54.8 51.1 43.5 42.8 28.9 49.1 48.8 46.3 39.7 49.8±0.14
SAR 61.2 55.7 54.3 62.1 61.4 54.0 57.1 53.8 45.2 45.7 29.0 53.8 51.7 50.0 40.3 51.7±0.02
CoTTA 72.7 79.6 75.7 82.5 80.3 75.7 75.9 79.7 68.9 74.4 70.5 96.7 74.2 74.6 74.1 77.0±13.3
RoTTA 65.8 66.7 64.5 68.6 72.9 62.5 64.8 55.1 43.5 44.4 27.9 77.8 53.9 58.5 48.3 58.3±0.13
AdaContrast 65.3 62.8 60.0 67.4 73.1 63.0 66.4 56.0 44.2 49.8 28.9 72.4 54.9 47.6 42.5 57.0±0.19
RMT 75.8 74.8 69.8 78.1 73.5 66.0 69.8 80.5 71.3 73.5 68.8 80.6 73.0 68.2 69.7 72.9±12.0
LAME 95.5 81.6 97.5 72.0 89.9 96.9 93.9 96.1 48.8 99.8 29.4 99.9 82.4 64.7 50.5 79.9±0.19
ROID (ours) 57.6 51.5 52.2 55.1 52.4 46.5 47.2 45.6 39.5 36.0 26.0 45.0 43.8 39.7 36.3 45.0±0.09



Table 13. Online classification error rate (%) for the corruption benchmarks at the highest severity level 5 for the mixed domains TTA setting.
For CIFAR10-C the results are evaluated on WideResNet-28, for CIFAR100-C on ResNeXt-29, and for Imagenet-C, ResNet-50, Swin-b and
ViT-b-16 are used. We report the performance of each method averaged over 5 runs.
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Source 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.4 30.3 43.5
BN–1 45.5 42.8 59.7 34.2 44.3 29.8 32.0 19.8 21.1 21.5 9.3 27.9 33.1 55.5 30.8 33.8±0.04
TENT-cont. 73.5 70.1 81.4 31.6 60.3 29.6 28.5 30.8 35.3 25.7 13.6 44.2 32.6 70.2 34.9 44.1±3.82
EATA 36.4 33.5 51.5 24.1 38.9 23.4 21.5 19.8 19.8 21.5 11.4 32.0 27.1 42.2 25.3 28.6±0.7
SAR 45.5 42.7 59.6 34.1 44.3 29.7 31.9 19.8 21.1 21.5 9.3 27.8 33.0 55.4 30.8 33.8±0.04
CoTTA 38.7 36.0 56.1 36.0 36.8 32.3 31.0 19.9 17.6 27.2 11.7 52.6 30.5 35.8 25.7 32.5±1.35
RoTTA 60.0 55.5 70.0 23.8 44.1 20.7 21.3 20.2 22.7 16.0 9.4 22.7 27.0 58.6 29.2 33.4±0.15
AdaContrast 36.7 34.3 48.8 18.2 39.1 21.1 17.7 18.6 18.3 16.8 9.0 17.4 27.7 44.8 24.9 26.2±0.11
RMT 42.8 39.7 55.0 28.5 38.6 26.5 25.9 19.6 18.9 20.6 12.2 27.3 26.9 56.9 25.9 31.0±0.75
LAME 87.8 86.5 88.0 79.5 83.0 72.4 76.8 67.5 78.1 68.7 49.8 78.1 69.3 75.3 66.9 75.2±0.12
ROID (ours) 37.1 34.3 50.9 24.8 38.1 22.5 22.0 18.8 18.5 18.8 9.9 25.6 27.2 45.7 26.2 28.0±0.12
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Source 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4
BN–1 62.7 60.7 43.1 35.5 50.3 35.7 34.4 39.9 38.8 51.5 27.5 45.5 42.3 72.8 46.4 45.8±0.04
TENT-cont. 95.6 95.2 89.2 72.8 82.9 74.4 72.3 78.0 79.7 84.7 71.0 88.5 77.8 96.8 78.7 82.5±1.45
EATA 42.4 40.1 34.2 30.1 42.7 31.7 29.3 35.6 35.8 43.7 30.2 42.0 36.9 38.1 40.6 36.9±0.21
SAR 75.8 72.7 41.1 29.2 45.2 31.1 28.9 36.7 37.7 43.9 29.3 41.8 37.1 89.2 42.4 45.5±0.24
CoTTA 54.4 52.7 49.8 36.0 45.8 36.7 33.9 38.9 35.8 52.0 30.4 60.9 40.2 38.0 41.1 43.1±0.05
RoTTA 65.0 62.3 39.3 33.4 50.0 34.2 32.6 36.6 36.5 45.0 26.4 41.6 40.6 89.5 48.5 45.4±0.14
AdaContrast 54.5 51.5 37.6 30.7 45.4 32.1 30.3 36.9 36.5 45.3 28.0 42.7 38.2 75.4 41.7 41.8±0.05
RMT 52.6 49.9 32.2 31.0 40.5 31.8 30.4 33.4 33.9 40.6 27.8 36.9 35.3 65.0 38.1 38.6±0.15
LAME 98.5 98.5 98.2 98.2 98.4 98.3 98.2 98.3 98.3 98.5 98.2 98.4 98.4 98.8 98.4 98.4±0.04
ROID (ours) 40.5 38.0 32.0 28.1 40.5 29.7 27.6 34.1 33.8 41.3 28.7 38.7 34.3 39.7 38.5 35.0±0.04
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Source 97.8 97.1 98.2 81.7 89.8 85.2 77.9 83.5 77.1 75.9 41.3 94.5 82.5 79.3 68.6 82.0
BN–1 92.8 91.1 92.5 87.8 90.2 87.2 82.2 82.2 82.0 79.8 48.0 92.5 83.5 75.6 70.4 82.5±0.06
TENT-cont. 99.2 98.7 99.0 90.5 95.1 90.5 84.6 86.6 84.0 86.5 46.7 98.1 86.1 77.7 72.9 86.4±1.35
EATA 90.1 88.1 90.1 76.5 80.9 73.8 68.5 71.4 69.5 63.5 42.1 93.2 69.7 52.4 54.8 72.3±1.57
SAR 98.4 97.3 98.0 84.0 87.3 82.6 77.2 77.5 76.1 72.5 43.1 96.0 78.3 61.8 60.4 79.4±0.75
CoTTA 89.1 86.6 88.5 80.9 87.2 81.1 75.8 73.3 75.2 70.5 41.6 85.0 78.1 65.6 61.6 76.0±0.17
RoTTA 89.4 88.6 89.3 83.4 89.1 86.2 80.0 78.9 76.9 74.2 37.4 89.6 79.5 69.0 59.6 78.1±0.07
AdaContrast 96.2 95.5 96.2 93.2 96.4 96.3 90.5 92.7 91.9 92.4 50.8 97.0 96.6 89.7 87.1 90.8±0.11
RMT 87.0 84.6 86.6 79.9 86.5 80.8 74.3 70.2 74.0 69.9 45.7 86.4 78.1 64.8 61.6 75.4±0.19
LAME 99.4 99.3 99.5 95.2 97.3 95.9 93.9 95.5 93.9 93.8 84.3 98.5 95.3 94.2 91.3 95.1±0.39
ROID (ours) 76.4 75.3 76.1 77.9 81.7 75.1 69.9 70.9 68.8 64.3 42.5 85.4 69.8 53.0 55.6 69.5±0.13
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Source 71.1 70.0 75.4 72.8 81.6 63.8 68.2 57.9 50.8 40.7 28.6 60.5 72.1 86.6 59.3 64.0
TENT-cont. 65.8 63.9 68.2 73.4 75.3 59.1 64.5 60.0 57.9 49.1 28.8 61.4 72.2 81.6 56.9 62.6±0.12
EATA 61.7 60.4 61.4 65.8 68.7 52.8 58.1 54.1 50.8 46.1 27.2 51.0 63.4 72.0 51.5 56.3±0.18
SAR 64.1 62.3 64.9 71.4 71.8 57.5 62.0 58.8 56.0 51.0 29.0 59.5 68.4 77.3 54.3 60.6±0.62
CoTTA 54.5 54.9 55.9 77.9 79.8 67.1 70.9 62.8 59.1 53.7 37.3 60.4 70.3 87.5 57.7 63.3±7.69
RoTTA 67.4 65.8 70.2 72.9 78.8 62.7 67.7 53.7 48.5 43.2 28.8 58.5 70.2 87.8 62.0 62.6±0.11
AdaContrast 62.7 61.5 63.5 75.1 83.5 74.3 71.9 67.7 71.6 72.9 29.0 53.5 79.6 69.5 53.5 66.0±0.80
RMT 49.0 48.1 49.2 67.9 72.4 58.5 62.7 56.4 52.0 54.7 33.7 51.3 62.1 63.5 49.0 55.4±4.54
LAME 71.6 70.4 75.9 73.2 82.0 64.4 68.6 58.6 51.9 42.2 29.5 61.7 72.7 86.9 59.8 64.6±0.12
ROID (ours) 61.1 59.6 60.8 66.4 67.3 53.4 57.3 51.0 45.1 43.1 26.2 52.6 59.6 71.1 50.9 55.0±0.26
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Source 65.8 67.3 65.3 68.8 74.4 64.3 66.6 56.8 45.2 48.6 29.2 81.8 57.1 60.8 50.2 60.2
TENT-cont. 60.6 60.4 59.6 63.6 67.8 57.1 61.2 55.0 48.8 47.4 28.6 66.7 53.9 50.4 44.4 55.0±0.08
EATA 59.2 57.7 57.8 59.0 63.1 52.6 58.2 51.1 46.5 44.2 28.6 58.6 50.9 47.0 41.9 51.8±0.14
SAR 58.9 57.6 57.6 59.4 63.6 53.0 58.5 52.3 47.1 45.4 28.3 61.6 51.4 47.4 42.0 52.3±0.11
CoTTA 89.4 92.0 88.9 93.6 92.6 90.6 86.5 94.9 88.2 86.6 75.8 96.5 85.7 93.5 84.6 89.3±6.18
RoTTA 64.4 65.6 63.7 67.6 71.3 59.8 64.1 52.7 43.5 48.6 27.9 78.5 54.3 60.4 50.1 58.2±0.06
AdaContrast 64.8 63.4 63.3 72.8 76.6 73.7 74.6 67.7 48.0 89.6 30.2 93.2 60.8 57.3 46.3 65.5±0.15
RMT 76.6 76.1 76.5 78.1 78.0 72.6 72.4 80.4 67.8 71.2 55.0 94.6 69.3 66.5 65.2 73.4±13.44
LAME 67.9 69.1 67.4 70.6 75.7 66.3 68.4 59.2 48.1 53.8 33.1 84.6 59.3 62.8 52.8 62.6±0.16
ROID (ours) 58.3 57.2 57.3 57.4 61.6 52.1 58.3 49.7 44.1 42.1 27.2 55.8 50.6 47.0 41.5 50.7±0.08



Table 14. Online classification error rate (%) in the correlated TTA setting where samples are sorted by class. The corruption datasets are
evaluated at the highest severity level 5. We report the performance of each method averaged over 5 runs.

Dataset Architecture Source TENT EATA SAR CoTTA RoTTA AdaCont. RMT LAME ROID (ours)
CIFAR10-C RN-26 GN 32.7 87.6 40.8 37.1 44.5 33.7 30.5 57.5 11.3 15.9±0.27

IN-C
Swin-b 64.0 86.7 74.2 59.3 99.5 75.5 77.6 99.6 47.0 18.5±0.10
ViT-b-16 60.2 80.6 76.2 53.9 98.8 65.1 87.4 99.6 44.1 16.8±0.72

IN-R
Swin-b 54.2 53.6 53.9 53.1 58.9 54.1 56.9 48.1 13.6 25.2±0.37
ViT-b-16 56.0 53.4 53.6 49.9 81.0 55.8 62.1 85.8 13.0 25.8±0.13

IN-Sketch
Swin-b 68.4 67.4 66.3 72.3 95.3 68.1 66.9 91.8 58.2 43.9±0.19
ViT-b-16 70.6 66.7 63.7 74.6 95.5 70.1 72.3 97.9 61.0 44.0±0.14

IN-D109
Swin-b 51.4 68.5 53.9 55.5 58.5 50.5 52.1 51.9 30.4 30.6±0.16
ViT-b-16 53.6 84.3 57.4 58.7 93.1 53.8 56.7 90.6 35.4 31.7±0.08

Table 15. Online classification error rate (%) for the corruption benchmarks at the highest severity level 5 for the correlated TTA setting. For
CIFAR10-C the results are evaluated on ResNet-26 with group norm (RN-26 GN). For Imagenet-C, Swin-b, and ViT-b-16 are used. We
report the performance of each method averaged over 5 runs.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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Source 48.4 44.8 50.3 24.1 47.8 24.5 24.1 24.1 33.1 28.0 14.1 29.7 25.6 43.7 28.3 32.7
TENT-cont. 62.3 82.6 89.9 89.4 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 87.6±0.98
EATA 39.3 30.9 42.6 30.3 45.4 24.9 33.6 36.7 36.1 41.4 36.0 47.5 52.6 62.9 51.0 40.8±1.62
SAR 48.6 55.6 63.8 23.4 55.8 29.1 24.9 30.6 33.1 26.1 14.5 27.8 31.6 58.5 33.0 37.1±1.12
CoTTA 35.3 33.9 39.3 39.3 50.1 43.9 44.0 37.8 44.0 60.6 22.3 62.1 57.6 48.0 49.5 44.5±1.39
RoTTA 49.2 47.2 55.0 21.9 50.5 23.1 20.0 27.9 36.6 29.4 15.2 27.9 26.4 43.8 31.0 33.7±0.19
AdaContrast 42.5 33.0 46.3 23.1 50.0 24.2 23.0 27.2 29.8 23.1 19.0 22.7 26.9 41.4 25.5 30.5±0.14
RMT 57.3 57.4 66.6 26.8 64.8 40.8 42.0 54.7 63.0 66.7 56.2 67.4 70.5 62.4 66.3 57.5±5.30
LAME 26.0 23.8 25.2 5.3 12.7 4.3 4.9 5.2 6.9 6.2 4.8 11.5 4.0 24.6 4.4 11.3±0.21
ROID (ours) 26.6 13.9 28.5 8.9 38.1 6.1 6.1 18.3 10.8 7.7 5.6 9.2 13.6 33.5 11.0 15.9±0.27
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Source 70.4 69.9 75.5 72.8 81.9 64.4 68.6 57.9 50.5 40.7 29.2 59.8 72.6 87.0 58.8 64.0
TENT-cont. 61.4 57.5 59.9 76.6 76.3 80.1 93.0 97.6 99.7 99.9 98.9 99.8 99.8 99.8 99.7 86.7±0.90
EATA 64.7 71.6 77.1 81.3 78.9 75.9 73.9 71.7 71.7 71.1 54.4 81.6 78.3 83.4 77.3 74.2±2.42
SAR 62.3 58.7 59.7 80.9 79.5 60.5 65.5 66.8 59.8 52.5 27.4 46.5 69.2 53.0 47.5 59.3±0.57
CoTTA 94.2 99.9 99.9 99.6 99.9 99.9 99.9 99.9 99.9 99.9 99.8 99.9 99.8 99.9 99.7 99.5±0.17
RoTTA 69.4 66.6 70.8 82.5 79.8 76.4 76.8 62.8 58.9 76.2 47.9 95.2 77.3 98.3 94.2 75.5±0.29
AdaContrast 61.8 61.2 66.2 78.9 84.1 81.7 82.1 75.5 70.7 82.4 62.0 85.8 89.0 92.5 90.0 77.6±0.14
RMT 95.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.6±0.06
LAME 43.0 42.0 46.2 52.8 69.7 43.4 51.1 44.5 36.4 33.9 20.4 41.3 64.4 72.7 44.0 47.0±0.10
ROID (ours) 25.8 22.9 22.7 33.2 31.3 18.8 21.0 14.0 12.0 11.2 6.9 15.5 13.6 14.7 14.6 18.5±0.10

Im
ag

eN
et

-C
(V

iT
-b

-1
6)

Source 66.0 66.8 64.9 68.5 74.7 64.0 66.9 57.3 45.0 49.4 28.7 81.8 57.8 60.8 49.9 60.2
TENT-cont. 58.7 53.9 54.3 58.4 58.6 52.7 73.6 99.4 99.8 99.9 99.9 99.9 99.9 99.9 99.9 80.6±0.05
EATA 59.6 63.5 68.9 77.0 75.4 77.4 75.4 72.8 70.2 77.2 65.0 97.9 88.0 87.7 87.0 76.2±4.53
SAR 55.8 51.7 55.0 57.5 56.9 50.3 58.3 64.6 55.0 48.7 41.0 55.3 59.1 50.2 48.9 53.9±11.5
CoTTA 95.8 99.5 99.5 98.9 98.2 97.6 96.0 99.7 99.7 99.0 99.5 99.8 99.6 99.4 99.7 98.8±0.68
RoTTA 66.3 67.0 69.9 70.5 70.2 58.9 64.8 60.4 55.0 56.0 34.3 79.6 61.2 87.5 74.3 65.1±0.15
AdaContrast 66.2 70.4 78.7 81.7 87.3 88.5 91.7 89.8 90.6 94.4 87.3 94.5 96.6 97.1 96.9 87.4±0.10
RMT 95.8 99.9 99.9 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.9 99.8 99.8 99.8 99.6±0.14
LAME 40.1 39.1 39.3 48.6 58.6 43.1 48.4 39.5 34.1 42.3 23.7 84.8 44.5 40.1 35.8 44.1±0.02
ROID (ours) 25.7 23.0 23.8 29.0 21.9 19.0 18.1 14.8 12.2 10.2 6.4 14.9 12.3 9.9 10.1 16.8±0.72



Table 16. Online classification error rate (%) for ImageNet-C at the highest severity level 5 for the mixed domains correlated TTA setting
with the Dirichlet concentration parameter δ = 0.01. We report the performance of each method averaged over 5 runs.
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Source 70.4 69.9 75.5 72.8 81.9 64.4 68.6 57.9 50.5 40.7 29.2 59.8 72.6 87.0 58.8 64.0
SAR 70.8 68.8 71.2 73.4 76.2 61.4 66.0 65.3 61.1 56.7 32.8 62.0 73.2 79.6 55.7 64.9±0.81
LAME 37.4 37.4 37.4 37.6 37.8 37.4 37.7 37.2 37.0 37.3 36.5 37.5 37.6 37.8 37.2 37.4±0.12
ROID (ours) 30.9 30.1 31.0 34.8 37.2 26.4 31.1 26.8 22.8 23.2 12.3 27.0 33.6 36.4 25.2 28.6±0.16

V
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6 Source 66.0 66.8 64.9 68.5 74.7 64.0 66.9 57.3 45.0 49.4 28.7 81.8 57.8 60.8 49.9 60.2
SAR 64.5 62.9 63.2 59.0 64.1 52.8 60.6 54.8 49.6 47.4 30.6 59.1 53.5 49.0 42.9 54.3±0.59
LAME 36.2 36.1 36.1 36.3 36.3 36.1 36.4 36.1 35.8 36.1 35.4 36.6 35.9 36.0 35.7 36.1±0.15
ROID (ours) 27.0 26.2 26.1 26.1 32.0 23.4 29.2 23.4 19.4 18.6 10.8 26.6 25.5 21.5 17.7 23.6±0.05

Table 17. Average online classification error rate (%) over 5 runs for different configurations for a) the continual TTA setting and b) the
mixed domains TTA setting. For the ImageNet variants, a ResNet-50 is used. For CIFAR10-C and CIFAR100-C, the results are evaluated
utilizing a WideResNet-28 and a ResNeXt-29, respectively.
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Source 43.5 46.4 82.0 63.8 75.9 58.8 61.7 43.5 46.4 82.0 58.8 57.7
TENT 20.0 62.2 62.6 57.6 69.5 52.9 54.1 44.1 82.5 86.4 56.1 67.3
SLR 20.1 57.7 61.5 55.6 67.8 52.7 52.6 42.8 78.2 87.4 58.2 66.7
+ Loss weighting 17.7 31.1 60.8 51.1 64.1 52.0 46.1 26.9 35.2 72.1 51.6 46.4
+ Weight ensembling 17.7 29.5 56.2 52.3 65.5 48.9 45.0 29.1 35.4 71.4 51.5 46.9
+ Consistency 16.3 29.3 54.4 51.2 64.2 48.1 43.9 28.4 35.1 69.6 51.0 46.0
+ Prior correction 16.2 29.3 54.5 51.2 64.3 48.0 43.9 28.0 35.0 69.5 50.9 45.9

Table 18. Average online classification error rate (%) over 5 runs for different configurations for a) the correlated TTA setting and b) the
mixed domains correlated TTA setting. For the ImageNet variants, a ViT-b-16 is used, while for CIFAR10-C a ResNet26-GN is applied.
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Source 32.7 60.2 56.0 70.6 53.6 54.6 32.7 60.2 53.6 48.8
TENT 87.6 80.6 53.4 66.7 84.3 74.5 88.2 81.3 77.3 82.3
SLR 89.0 90.3 52.3 78.0 90.4 80.0 88.3 88.7 87.4 88.1
+ Loss weighting 29.1 91.6 50.4 63.1 67.6 60.4 41.9 88.9 52.6 61.1
+ Weight ensembling 28.1 44.7 49.8 61.7 49.2 46.7 31.0 53.9 49.8 44.9
+ Consistency 29.5 42.5 48.0 60.5 48.1 45.7 31.0 51.5 48.8 43.8
+ Prior correction 15.9 16.8 25.8 44.0 31.7 26.8 17.4 23.6 29.4 23.5



D. Comparison to Related Work
Comparison with CoTTA While both CoTTA and our proposed method utilize source weights, CoTTA uses stochastic
restoring, where with a small probability current weights are restored with the corresponding weights from the source model.
The idea behind stochastic restoring is that the network avoids drifting too far away from the initial source model. But, as
discussed in Section B.2, CoTTA first of all cannot prevent catastrophic forgetting on the continual ImageNet-C benchmark
with 50,000 samples per corruption and, second, shows instabilities for certain domain shifts or settings. Instead of performing
a stochastic restore, our proposed weight ensembling, which continually ensembles the weights of the initial source model and
the weights of the current model, prevents catastrophic forgetting and mostly preserves the generalization capabilities of the
initial source model.

Comparison with EATA EATA, like our proposed method, utilizes certainty and diversity weighting. However, their
weighting scheme relies on dataset-specific hyperparameters, such as an entropy threshold and a cosine similarity threshold.
While the entropy threshold is determined heuristically, the cosine similarity threshold needs to be manually specified for
each dataset. Choosing an inappropriate cosine similarity threshold can lead to a significant decrease in performance. For
example, switching the cosine similarity threshold of CIFAR10-C and CIFAR100-C reduces the performance by absolutely
2.7% and 10.8%, respectively. In contrast, our proposed diversity weighting scheme does not necessitate dataset-specific
hyperparameters and has demonstrated success across a wide range of different datasets, models, and domain shifts, as
validated by our experiments. To address catastrophic forgetting, EATA incorporates elastic weight consolidation, which
requires access to source samples for computing the Fisher information matrix. As discussed in Appendix B.2, our proposed
weight ensembling approach also effectively mitigates catastrophic forgetting without the need for source data availability.
Furthermore, EATA does not only exhibit instabilities when dealing with correlated data, but also demonstrates impractical
performance outcomes in this setting due to not employing any prior correction.


