A. Additional analysis

A.1. Loss of generalization
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Figure 5. Difference of error for a moderate and a stronger model adaptation corresponding to a learning rate of 10~* and 10~3, respectively.
The first row examines supervised fine-tuning, while the second row considers diversity-regularized self-training. The right column further
illustrates the effect of adding our weight ensembling approach. All experiments are conducted using an ImageNet pre-trained ResNet-50
that is adapted using 40,000 samples of one of the corruptions from ImageNet-C. The model is then evaluated on the remaining 10,000
samples for all corruptions as well as the source domain. Adapting the model on a potentially narrow distribution can clearly degrade its
generalization capabilities. Adding weight ensembling helps to mitigate the loss of generalization as well as catastrophic forgetting.

Since adapting a model to a target domain effectively means moving the model from its initial source parameterization
to a parameterization that better models the current target distribution, this should trigger a loss of generalization when the
target distribution is narrow. While we have already shown in Section 3 that a generalization loss occurs when performing
self-training in the form of entropy minimization, this should also hold when our certainty and diversity weighting from
Section 4.1 is further added, or when fine-tuning the model in a supervised manner.

To demonstrate the previous points, we adopt the same setup as before, i.e., we use an ImageNet pre-trained ResNet-50 and
adapt the model with 40,000 samples of one of the corruptions from ImageNet-C. Afterwards, the model is evaluated for each



corruption and the source domain on the remaining 10,000 samples. Figure 5 illustrates the difference of error for a moderate
and a stronger adapted model, corresponding to a learning rate of 10~% and 1073, respectively. Depending on the investigated
corruption, not only fine-tuning but also diversity-regularized self-training result in an increased error on other corruptions,
indicating a loss of generalization. This demonstrates the risks of model adaptation in a potentially unknown environment.
Using our proposed weight ensembling, a loss of generalization and catastrophic forgetting can mostly be mitigated.

A.2. Model bias and trivial solutions

As stated in Section 3, a critical factor for successful TTA is stability. Current methods for online TTA mostly leverage
self-training to adapt the model to the current domain shift, showing great performance on short test sequences [5,34,51,53].
However, if self-training is utilized without any proper regularization, the model is likely to become biased after a while. In
the worst case, the bias can even evolve into a trivial solution, where the model only predicts a small subset of classes. In this
section, we first demonstrate the aforementioned points for TENT, which exploits entropy minimization for model adaptation.
Then, we investigate the behaviour of current state-of-the-art methods, revealing some inefficiencies to effectively counter
model bias during test-time.

Long test sequences promote model bias and domain shifts can trigger trivial solutions To investigate whether the
model is becoming biased or degrades to a trivial solution during the adaptation, we consider the total variation distance
(TVD). It measures the deviation between the actual class prior and the predicted prior. The TVD is defined as

C
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where p; and p; are the true and predicted prior probability for class ¢, respectively. If the TVD is calculated along the
test sequence, it can also indirectly show the occurrence of error accumulation, since it is a lower bound of the error of the
pseudo-labels [21]. Since TENT reports good results for adapting a model to a single domain, we begin our analysis with
the same setting and only vary the length of the test sequence by repeating each domain several times. Specifically, we use
ImageNet-C with 50,000 samples per corruption and CIFAR100-C with 10,000 samples per corruption (both at severity
level 5). Following TENT, we utilize a ResNet-50 with a learning rate Ir = 2.5e~* for ImageNet-C and a ResNeXt-29 with
Ir = 0.001 for CIFAR100-C. As shown on the left side of Figure 6, TENT quickly deteriorates to a trivial solution for half of
the corruptions of ImageNet-C, while developing a growing bias for the other half. In case of CIFAR100-C, TENT initially
deteriorates slightly but then remains stable for most of the corruptions. To study the impact of multiple domain shifts, which
is a quite common setting in practice, we leverage all 15 corruption types and create 15 randomly ordered domain sequences.
The results for this setting, including different learning rates, are depicted in the middle of Figure 6. Since the TVD now
steadily increases in all settings, it becomes clear that domain shifts can explicitly enhance model bias and lead to trivial
solutions. If the domain non-stationarity is further increased to its maximum, where consecutive test samples are likely to
originate from different domains, the TVD increases even more rapidly (right side of Figure 6). Now, by equipping TENT
with our certainty and diversity based loss weighting, stable adaptation across all previously considered settings and a wider
range of learning rates is possible. The only exception to this is ImageNet-C in the mixed domains TTA setting with a learning
rate four times higher than the default. This clearly demonstrates that maintaining diversity is crucial in TTA.

Many state-of-the-art methods lack diversity In Figures 7 and 8, we investigate existing TTA methods and our proposed
method, namely ROID, in terms of diversity on the continual ImageNet-C benchmark with 50,000 samples per corruption.
Figure 7 provides a visual representation of online batch predictions across the entire continual sequence, illustrating the
impact on diversity over time and the influence by different domain shifts. Figure 8 depicts the histogram over the predicted
classes for the last corruption (JPEG) after adapting the model on the complete continual sequence.

Beginning with BN—1, we observe variations in the degree of model bias induced by different domain shifts. Corruptions
where the performance of BN-1 is relatively bad, tend to show a higher model bias. Looking at TENT, a collapse can be
seen after a few corruptions, resulting in predicting only a small subset of the 1,000 classes. AdaContrast also strongly lacks
diversity after few corruptions. Since LAME solely corrects the model output without updating the model’s parameters,
the diversity of its predictions heavily relies on the specific type of domain shift. Although LAME maintains diversity for
certain corruptions, such as brightness, it collapses for the majority. ROTTA shows the behavior whereby diversity temporarily
diminishes for specific domain shifts, such as the transition from impulse noise to defocus blur and brightness to contrast.
This behavior can likely be attributed to its robust batch normalization, which incorporates past statistics, resulting in bad



statistics when past statistics differ from current ones. While SAR demonstrates better diversity than CoTTA and RMT, it
still manifests a deficiency in diversity, evident, for example, in the predictions for the final corruption, where a strong bias
towards a few classes exists. On the other hand, EATA and ROID with their diversity weighting effectively preserve diversity
throughout the adaptation process.
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Figure 6. Illustration of the total variation distance of TENT on CIFAR100-C and ImageNet-C at severity level 5 without (first row) and with
(second row) our loss weighting. The model is adapted to a single domain (left), in the continual setting (middle) using 15 randomly ordered
domain sequences, and the mixed domains setting (right). Unless otherwise stated, TENT’s default learning rates of 1.0e ™ and 2.5¢™* are
used. Comparing the left and middle column of CIFAR100-C, it becomes obvious that domain shifts can promote the occurrence of trivial
solutions. In case of mixed domains, model bias and trivial solutions occur even faster for both datasets. In contrast, using TENT with our
loss weighting prevents the model from becoming biased in almost all settings.
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Figure 7. Illustration of the batch-wise predictions in the continual TTA setting using a ResNet-50 and ImageNet-C with 50,000 samples per
corruption.
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Figure 8. Frequency of the ResNet-50’s predictions of the last corruption (JPEG) over the continual TTA sequence using 50,000 samples per
corruption.



B. Ablation studies
B.1. Architectures

Table 5. Online classification error rate (%) for the ImageNet benchmarks in the continual TTA setting. Common architectures and their
variations are considered.

Inception ResNet ResNeXt WideResNet DenseNet RegNetY

vl v3 | 18 50 101 152 |50-32x4d 101-32x8d | 50 101 | 121 169 201 | 8gf 32gf

GFLOPs | 2 6 | 1.8 38 7.6 113 4.2 8.0 - 23 57 68 86|80 323
MParams | 6.6 27 | 12 25 44 60 25 44 69 127 | 80 14 20 | 39 145
Z | Source 30.2 227|302 239 226 21.7 224 20.7 215 21.2 |25.6 244 23.1|20.0 19.1
Source 81.7 765|853 820 774 77.6 78.9 75.2 789 753 |78.6 75.7 755|784 759
LZ') BN-1 70.3 69.6|72.7 68.6 66.3 65.9 67.1 64.1 66.0 656 | 682 63.7 63.5|67.7 64.4
ROID 67.8 642622 545 504 492 50.9 46.6 50.7 49.0 |55.8 512 50.6|50.9 46.4
Source 63.8 62.2|67.0 63.8 60.7 58.7 62.3 57.4 61.4 59.6 |62.8 604 59.2|60.0 579
; BN-1 61.5 639651 60.3 57.7 56.1 59.3 56.2 59.1 583 |59.8 57.0 57.3|59.5 57.0
ROID 59.9 599|59.6 512 464 439 48.3 42.0 46.9 449 |509 47.7 46.7(49.2 429

N Source 769 734179.8 759 73.0 71.5 74.5 70.6 747 719 | 758 727 723|732 71.6
; BN-1 74.6 75.0|77.8 73.6 72.3 709 73.4 69.2 753 747 | 751 719 721|748 69.3
~ | ROID 733 71.1|71.5 64.0 612 59.2 62.1 57.3 619 60.6 |66.0 622 614|623 56.6
2 | Source 60.7 58.5|61.8 58.8 56.1 55.1 57.4 54.1 572 553 |583 562 555|554 537
5. BN-1 58.0 60.5|59.4 55.1 53.7 524 54.7 51.7 56.2 55.6 |56.0 53.7 542|556 526
Z | ROID 56.5 57.4|54.6 479 46.1 44.0| 463 43.6 46.5 45.0 |48.5 46.5 46.1 |473 432

Table 6. Online classification error rate (%) for the ImageNet benchmarks in the continual TTA setting. Mobile and transformer architectures
and their variations are considered (tiny, small, base).

MobileNet RegNetX RegNetY Swin Swin v2 ViT MaxViT
v2  v3-s v3-1 [ 400mf 800mf | 400mf 800mf || t S b t S b | b-16 b-32 t
GFLOPs |0.30 0.06 0.22| 040 080 | 040 0.80 || 45 87 154| 59 115 203|169 - 5.6
MParams | 3.4 25 54| 52 7.3 43 6.3 29 50 88 | 28 50 88 | 8 88 31
Z | Source 28.1 323 26.0| 272 248 | 260 236 |[185 168 164|179 163 159|189 24. 16.3
Source 86.7 83.5 825| 845 840 | 833 80.6 ||70.5 63.7 64.0|71.7 652 64.2]60.2 61.6| 54.9
; BN-1 772 747 73.0| 737 724 | 732 700 - - - - - - - - 534
ROID 66.0 67.7 64.2| 638 61.6 | 63.9 59.6 |[529 48.8 46.8|54.8 478 475|449 520| 400
~ Source 69.0 70.7 654 | 664 659 | 67.0 645 ||58.7 553 543]60.0 559 54.8|56.0 58.2| 50.6
2 | BN-1 67.8 71.7 66.5| 659 644 | 67.1 639 - - - - - - - - 49.0
ROID 62.0 69.0 63.3| 60.8 589 | 629 59.1 ||50.7 46.6 45.8|50.0 44.4 444|442 46.8| 385
N Source 809 81.6 764 | 787 78.1 79.6 777 ||72.8 69.0 685|740 694 69.3|70.6 722 | 65.1
; BN-1 81.4 869 82.0| 804 792 | 81.8 795 - - - - - - - - 67.0
~ | ROID 742 838 77.6| 756 73.1 | 76,5 740 ||63.5 59.6 58.6 |64.0 589 58.7|58.6 59.9| 552
2 | Source 62.5 635 59.5| 600 594 | 60.1 58.6 |[543 51.8 514|552 51.8 51.5|53.6 559 | 494
E. BN-1 60.6 66.0 61.8| 60.8 59.6 | 62.1 599 - - - - - - - - 48.8
Z | ROID 55.1 62.6 58.6| 556 544 | 57.8 551 || 48.1 45.6 45.0|48.6 450 443|450 47.1| 419

To demonstrate that our proposed method ROID is largely model-agnostic, we evaluate our method in the continual TTA
setting on 31 different architectures. In Table 5, we report our results on regular architectures. In Table 6, mobile architectures
and transformers are considered on the left and right, respectively. All results worse than the source performance are highlighted
in red. While test-time normalization (BN-1) can decrease the error for corruptions (IN-C) on all considered architectures, this
is not the case for natural shifts (IN-R, IN-Sketch, IN-D109). Especially for mobile architectures, Inception-v3, and RegNets,



the error rate even increases. Since ROID applies test-time normalization, it works particularly well when a good estimation of
the batch statistics is possible during test-time. ROID always outperforms BN-1, but due to the bad estimation of the batch
statistics of MobileNet-v3 on ImageNet-Sketch, improvement upon the source performance is not possible. Nevertheless,
in general, ROID can significantly outperform the source model, demonstrating its applicability to a wide range of different
architectures. Among all networks, MaxViT-tiny, a hybrid (CNN + ViT) model, performs best on all ImageNet benchmarks.
Regarding the considered CNN architectures, ResNeXt-101-32x8d and RegNetY-32gf show the best overall results.

B.2. Catastrophic Forgetting

In Figure 9, we investigate the occurrence of catastrophic forgetting [27] for CoTTA [53], EATA [33], and ROID on the
long continual ImageNet-C sequence (50,000 samples per corruption). Following [33], we adapt the model on an alternating
sequence of corrupted data and source data, i.e., [Gaussian, Source, Shot, Source, ...], using the complete ImageNet validation
set (50,000 samples) as Source. Note that this procedure is different compared to how catastrophic forgetting is measured
within the field of continual learning. However, in TTA, where the model is continually adapted to an unknown domain, this is
the more realistic setting. Clearly, CoTTA suffers from major catastrophic forgetting, as the source error steadily increases
after each corruption. By using elastic weight consolidation, EATA can largely prevent forgetting. However, to perform elastic
weight consolidation, EATA requires data from the initial source domain, which may be unavailable in practice. Our proposed
method ROID, which utilizes weight ensembling, is even more effective than EATA and only requires the initial parameters

of the normalization layers. ROID is capable of nearly recovering the performance of the initial source model on the source
domain.
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Figure 9. Source and adaptation error of ROID, EATA, and CoTTA for ImageNet-C (50,000 samples per domain) in the continual TTA
setting with an alternating domain sequence. The dashed line indicates the lower bound (source error of the source model).

B.3. Momentum for Weight Ensembling

In Table 7, we analyze the sensitivity with respect to the momentum « used for our weight ensembling. ResNet-50,
Swin-b, and ViT-b-16 are evaluated on the continual ImageNet-C benchmark. Choosing a relatively low momentum o = 0.9,
corresponding to only “’keeping” 90% of the current model and adding 10% of the weights of the initial source model,
limits adaptation. In the interval o € [0.99,0.9975], a decent compromise between allowing adaptation and remaining good
generalization from the source model is possible. For large momentum values o > 0.999 the advantages of weight ensembling
vanish, resulting in an increase of adaptation error for all architectures.

B.4. Computational Efficiency

Since efficiency is also of great importance for a method performing its adaptation during test-time, we study in Table 8
the efficiency of each method with respect to the number of required forward and backward propagations, as well as the
number of trainable parameters. We conduct the analysis on ImageNet-R using a ResNet-50. Clearly, the most inefficient
methods are CoTTA, RMT, and AdaContrast which do not only require three and four times as many forward passes, but
also calculate the gradients with respect to all parameters. While RoTTA also performs three forward passes per test sample,



Table 7. Online classification error rate (%) for ImageNet-C at the highest severity level 5 in the continual TTA setting. Different momentum
values used for weight ensembling are considered for our approach. Note that we omitted prior correction and Lscg for a clearer analysis.

@ 0.99975 0.9995 0.999 0.9975 0.995 0.99 095 0.9
Model
ResNet-50 60.1 589 584 570 563 56.1 60.0 63.0
Swin-b 53.4 524 519 50.8 50.1 49.7 53.4 57.0
ViT-b-16 47.9 478 474 467 46.7 47.0 51.8 553

significantly less parameters are trained and the number of backward propagations is not increased. The most efficient method
during adaptation is EATA. Compared to the second most efficient method, TENT, fewer backward passes are required as
some samples are filtered out. Due to performing consistency regularization, ROID is slightly less efficient than TENT and
EATA, but comparable to SAR. Note that the additional 2000 forward and backward passes required to calculate the Fisher
information matrix in EATA are not included in Table 8.

Table 8. Efficiency analysis for adapting a ResNet-50 on ImageNet-R.

Method Error (%) #Forwards #Backwards Train. Params (%)
Source 63.8 30,000 - -
BN-1 60.3 30,000 - -
LAME 99.4 30,000 - -
TENT-cont. 574 30,000 30,000 0.21
EATA 54.2 30,000 5,440 0.21
SAR 572 46,279 30,111 0.12
CoTTA 574 90,000 30,000 100
RoTTA 60.8 90,000 30,000 0.21
AdaContrast 59.1 120,000 60,000 100
RMT 55.9 90,000 60,000 100
ROID (ours) 51.3 48,610 37,220 0.21

B.S. Memory Efficiency

Another huge advantage of architectures based on group or layer normalization is their potential to recover the batch TTA
setting from a single sample scenario by leveraging gradient accumulation. This approach has the additional benefit that it
significantly reduces the amount of required memory, which can be a scarce when TTA is performed on an edge device. In
Table 9, the allocated memory for the batch and single sample setting is compared. Using gradient accumulation with TENT
and ViT-b-16 reduces the maximum GPU memory consumption by 14.5 times while providing the same results. In case of
ROID, the reduction factor is 15.8. If Swin-b is used as a model, the memory reduction factors are even larger.

Table 9. Memory efficiency analysis for TENT-cont. and ROID when adapting either Swin-b or ViT-b-16 on ImageNet-R.

Method Architecture Batch Size Error (%) Max. GPU mem. allocated
TENT-cont. Swin-b 64 54.2 9.20 GB
TENT-cont. Swin-b 1 543 0.50 GB
TENT-cont. ViT-b-16 64 533 6.36 GB
TENT-cont. ViT-b-16 1 53.3 0.44 GB
ROID (ours) Swin-b 64 45.8 1592 GB
ROID (ours) Swin-b 1 45.8 0.71 GB
ROID (ours) | ViT-b-16 64 44.2 10.90 GB
ROID (ours) | ViT-b-16 1 44.1 0.69 GB




B.6. Component Analysis

In the following we elaborate and extend the component analysis from the main paper. Detailed results for the continual
and mixed-domains setting are presented in Table 17 and for the correlated and mixed-domains correlated setting in Table 18.
To adapt a model to the entire spectrum of Universal TTA, the most important aspect is to have a stable method. This factor
isn’t solely crucial for a specific scenario in TTA but resonates across all settings. As our analysis in Sec. 3 and Appendix A.2
suggests, even in the easiest setting (continual) it is essential to prevent the model from developing a bias or worse, collapsing
to a trivial solution during test-time. A non-stationary setting, such as mixed-domains, can further enhance a model bias and
degrade performance. To circumvent this, diversity weighting is essential. This is also supported by our component analysis
which demonstrates that the driving factor in the continual and mixed-domains setting is diversity and certainty weighting.

To effectively address the challenge of dealing with multiple domain shifts over time, we employ weight ensembling
(WE). WE retains generalization and still enables a good adaptation, as demonstrated in Sec. 3. It should be underscored
that this is only necessary when a model adapts to a narrow distribution, potentially leading to overfitting on the current
domain. In the context of mixed-domains, where samples from different domains are encountered within a single batch,
adapting to such a broad distribution is also possible without WE. This is demonstrated by our component analysis, where WE
improves the performance where multiple domain shifts are encountered, but actually slightly degrades the performance in the
mixed-domains setting (broad distribution). Note that also for ImageNet-R and ImageNet-Sketch the best performance in
the continual setting is achieved for configuration B, since here we only adapt to a single domain and do not encounter any
additional domain shifts where generalization would be of importance. Nevertheless, the concept of WE carries the added
benefit of enhancing overall stability. It serves as a corrective measure, capable of rectifying suboptimal adaptations over time,
by continually incorporating a small percentage of the source weights. This becomes visible for the difficult adaptation in
correlated settings, where highly imbalanced data can hinder a stable adaptation process. Here, WE ensembling ensures a
stable adaptation process.

Shifting our focus to the correlated setting, the role of prior correction is substantial. Weighting the network’s outputs with
a smoothed estimate of the label prior benefits in settings with highly imbalanced data. Uncertain data points can be corrected
by taking prior label information into account, while not degrading performance when a uniform label distribution is present.

Taking a look at employing consistency through data augmentation, the component analysis shows that it is beneficial
across all settings and datasets. Compared to the other components, encouraging the invariance to small changes in the input
space, has a moderate benefit.



C. Detailed Results

Table 10. Online classification error rate (%) for different settings using the ImageNet-D109 dataset. We report the performance of each
method averaged over 5 runs. We do not report the results for ResNet-50 in the correlated setting, since BN-1 already achieves an error of
92.8%.

Setting continual correlated mixed domains
Time t t
~ I % I & S &
Method . § § . ‘5 5 § Mean . § § . § 5 1:75 Mean . § § . E“S 5 1:75 Mean
§ § 5§ ° % § § § ° % 5§ § 5 ¢ F
Source 642 81.0 515 242 732 58.8 642 81.0 515 242 732 58.8 642 81.0 515 242 732 58.8
BN-1 557 80.1 50.1 25.1 64.8|55.1+0.05(/92.4 932 91.9 92.7 94.0|92.840.05 | 58.3 78.6 51.7 26.0 66.6|56.2+0.03
TENT-c. |53.5 78.1 479 248 60.3|52.940.05 - - - - - - 57.8 81.7 50.1 253 65.7|56.1+£0.15
EATA 51.8 767 47.6 240 57.8|51.6+0.21 - - - - - - 542 784 493 243 60.5| 53.3+0.3
% SAR 539 77.6 473 244 58.1522+0.07| - - - - - - 552 775 49.1 248 61.9|53.7+0.05
g CoTTA |53.7 774 462 23.1 53.5|50.8+0.07 || - - - - - - 504 75.5 44.7 23.0 57.9|50.3+0.12
E RoTTA |[553 777 47.6 235 57.5|5234+0.04 | - - - - - - 569 7777 475 23.6 64.3|54.0+0.18
AdaCont. | 49.7 78.0 46.2 23.8 54.4|50.4£0.17 || - - - - - - 56.2 832 49.0 24.6 64.0|554+0.12
RMT 49.1 752 453 252 52.2(49.4+0.06| - - - - - - 499 768 454 245 56.8|50.7+0.23
LAME 99.1 99.4 978 29.6 99.2|85.0+0.12 || - - - - - - 99.0 99.6 98.7 98.8 99.2|99.1+0.02
ROID 459 742 44.6 23.1 52.3|48.0+0.06| - - - - - - 51.0 758 46.7 237 57.3|50.9+0.04

Source 53.6 73.6 44.0 203 653 51.4 53.6 73.6 44.0 203 653 | 51.4£0.0 ||53.6 73.6 44.0 203 65.3 51.4

TENT-c. |53.5 80.0 59.2 422 954]66.1+£0.69 || 53.8 80.1 60.5 49.7 98.3|68.5+£0.29 || 66.9 839 554 248 76.4]|61.5+£0.42
EATA 512 705 41.0 19.2 555 |47.54+0.14 |/ 524 712 458 295 70.7|539£1.18 503 719 418 19.6 60.7 | 48.9+0.12
SAR 522 785 520 204 67.7|54240.62| 613 77.7 493 202 689 |555+0.2556.7 783 464 21.2 67.3|54.0£0.14
CoTTA |532 740 423 199 60.0|49.9+0.18 || 557 80.6 54.5 32.1 69.8|58.5+10.7 | 51.6 72.5 41.1 19.5 62.2|49.4£0.23
RoTTA |52.7 723 410 19.5 57.8|48.7+0.03 532 73.0 425 20.1 63.6|50.5+0.07 || 49.4 709 40.6 19.6 60.2|48.1£0.10
AdaCont. | 48.2 739 402 18.6 55.8 |47.3£0.08 || 532 77.5 43.8 199 664 |52.1+0.11( 49.8 77.3 404 19.0 60.8 | 49.4£0.15
RMT 483 735 394 194 57.7|47.6+£044 ||51.9 79.2 423 214 64.8|51.9+1.97| 46.7 719 38.1 19.0 56.6 | 46.5+0.13
LAME 98.7 99.6 96.5 373 99.6|86.3+£0.24 |[27.8 623 18.0 7.7 36.3|30.4+0.27 [|97.3 98.7 96.8 95.8 98.1|97.3+£0.07
ROID 46.1 67.7 39.8 19.7 52.2|451+£0.10 || 27.8 539 24.1 10.5 36.8|30.6+0.16 | 48.2 69.9 40.6 19.6 57.7|47.2+0.07
Source 57.5 759 451 220 675 53.6 57.5 759 451 220 675 53.6 57.5 759 451 220 67.5 53.6

TENT-c. |58.1 86.5 82.0 945 99.2|84.0+£0.09 || 59.0 86.4 823 947 99.2|84.3+£0.03 || 82.1 91.0 74.0 48.0 88.5]|76.7£0.22
EATA 534 702 408 203 52.5|47.440.12 | 545 70.8 45.1 363 80.1|57.4%£2.24509 71.7 415 20.5 58.5|48.6+0.10
SAR 57.5 832 509 212 74.1|574%+0.64| 644 812 53.0 214 73.7|58.7£0.17 || 67.0 83.0 544 26.0 76.7|61.4£0.20
CoTTA [80.2 89.8 68.2 409 87.6|73.44+6.28 ||86.2 96.6 90.8 93.1 99.0|93.1£6.09 || 66.4 80.5 453 227 75.2|58.04+0.51
RoTTA |56.7 744 428 208 61.2|51.2+£0.03 ||57.4 755 44.6 224 69.0|53.840.04 | 53.2 73.1 42.1 21.0 62.9|50.5£0.06
AdaCont. | 51.5 76.8 414 19.9 59.0|49.7£0.11 || 59.4 81.1 472 21.8 74.1|56.7+0.12 || 53.1 79.6 41.8 20.0 62.5|51.4£0.12
RMT 825 904 66.0 450 87.2|742%£14.0( 842 97.6 90.7 825 98.0|90.6£103 | 75.8 87.6 614 444 84.6|70.8+:14.4
LAME 99.0 99.6 963 457 99.2|88.0+0.18 |[31.0 752 18.6 9.4 43.0|354+0.32(98.8 99.5 984 983 99.0|98.8+0.03
ROID 46.2 68.2 399 205 50.2|45.0+0.04 | 30.2 557 247 109 36.9 |31.7+0.08 || 48.6 69.7 40.6 20.5 55.2|46.9+0.02

Swin-b

ViT-b-16

Table 11. Online classification error rate (%) for ImageNet-D109 for the mixed domains correlated TTA setting with Dirichlet concentration
parameter § = 0.1. We report the performance of each method averaged over 5 runs.

s 5§ & - s
Method g 37; 5 g g Mean
[3) :s g &

Source | 53.6 73.6 440 203 653 51.4
2| SAR 56.4 78.0 465 212 674 |53.940.52
'5} LAME |26.6 259 30.8 282 28.3|28.0+0.39

ROID |255 47.0 24.0 124 326 |28.340.19
o | Source | 57.5 759 451 220 675 53.6
= | SAR 663 824 53.6 255 764 |60.8+0.48
; LAME |27.6 273 322 296 29.4 |29.2+0.55

ROID |28.0 478 24.7 128 33.8|29.440.13




Table 12. Online classification error rate (%) for the corruption benchmarks at the highest severity level 5 for the continual TTA setting. For
CIFAR10-C the results are evaluated on WideResNet-28, for CIFAR100-C on ResNeXt-29, and for Imagenet-C, ResNet-50, Swin-b and
ViT-b-16 are used. We report the performance of each method averaged over 5 runs.

Time t
5 g 2 5 . o E o &
S 5 = S = .9 § 2 & 5 & ] T &
Method é“g ;50 . 5 ;60 F:?’ 5‘6 Né’ 50 £ <.9°0 330 85% § .Qg ‘ § Mean
Source 723 657 729 47.0 543 348 420 251 413 260 93 46.7 266 584 303 435
BN-1 283 262 362 127 351 139 122 175 17.7 150 83 13.0 23.6 19.7 27.4 |20.4+0.07
TENT-cont. | 25.0 20.3 29.0 13.8 31.7 162 14.1 18.6 17.6 174 108 156 243 19.7 25.1 |20.0+1.19
%) EATA 246 19.1 277 12.8 294 145 12.1 163 158 152 93 13.0 21.6 16.1 20.8 | 17.9+0.15
S | SAR 283 262 356 127 347 139 122 175 177 150 83 13.0 23.6 19.7 274 |20.4+0.06
% CoTTA 242 219 265 120 279 127 107 152 146 128 79 11.2 185 14.0 18.1 | 16.5£0.16
& | RoTTA 303 254 346 183 340 147 11.0 164 146 140 80 124 203 168 194 | 19.3+0.07
© AdaContrast | 29.2 225 299 139 328 142 11.8 16.6 150 143 80 10.0 21.7 17.7 19.9 | 18.5+0.04
RMT 24.1 202 257 132 255 147 128 162 154 146 108 140 18.0 14.1 16.6 | 17.0+0.34
LAME 86.0 839 884 836 887 644 820 284 71.7 371 94 741 413 79.7 463 | 64.31+0.18
ROID (ours) | 23.7 18.7 264 11.5 28.1 124 10.1 147 143 120 7.5 93 19.8 145 20.3 |16.24+0.05
Source 73.0 68.0 394 294 54.1 30.8 28.8 395 458 503 295 551 372 747 412 46.4
BN-1 423 40.7 432 277 41.8 298 279 350 347 41.8 264 302 356 33.1 41.2|354+0.03
TENT-cont. | 37.3 356 41.6 379 513 48.1 489 598 653 736 742 857 89.1 91.1 937 | 622+2.17
o | EATA 372 331 360 27.8 376 29.6 27.0 326 315 352 266 29.1 334 29.6 37.5|32.2+0.10
gl SAR 404 348 37.1 260 37.1 280 25.6 319 308 359 253 281 320 292 37.3]|32.0£0.10
E CoTTA 40.5 382 39.8 272 382 284 264 334 322 40.6 252 27.0 324 284 33.8|32.840.07
é RoTTA 49.1 449 455 30.2 427 295 26.1 322 30.7 37.5 247 29.1 32,6 304 36.7|34.8+0.15
© | AdaContrast | 42.5 369 385 27.7 404 293 274 328 307 38.0 261 284 341 334 36.1|33.5+0.08
RMT 40.2 362 360 279 339 284 264 287 288 311 255 27.1 28.0 26.6 29.0|30.2+0.15
LAME 989 99.0 982 98.1 98.8 98.1 98.0 982 98.8 989 98.0 989 981 99.0 984 | 98.5+0.05
ROID (ours) | 36.5 319 33.2 249 349 268 243 289 285 31.1 228 242 30.7 265 344 |29.340.04
Source 97.8 97.1 982 81.7 89.8 852 78.0 835 77.0 759 413 945 825 793 685 82.0
BN-1 849 84.0 848 849 845 733 61.1 658 682 519 350 830 563 512 60.0 | 68.6+0.06
S | TENT-cont. | 81.7 74.6 72,6 776 738 66.1 557 61.5 63.1 513 380 718 51.0 47.5 529 |62.6+0.11
2 EATA 763 66.5 650 73.1 69.1 62.1 535 589 593 48.1 359 62.8 475 439 475 |58.0+0.18
& | SAR 81.8 74.1 714 778 734 658 560 614 623 51.0 373 694 49.7 46.1 509 | 61.94+0.20
i.) CoTTA 84.5 820 804 81.8 795 69.2 588 60.8 61.1 485 365 675 478 41.8 459 | 63.1+£0.45
% RoTTA 88.3 828 82.1 913 837 729 594 662 643 533 356 745 543 482 52.6|67.34+0.25
o0 | AdaContrast | 83.0 80.6 787 824 788 725 635 635 640 532 387 670 543 49.7 532 | 65540.18
E RMT 799 763 73.1 757 729 647 56.8 564 583 490 40.6 58.2 478 437 44.8 | 59.9+0.21
LAME 999 999 999 83.6 99.8 99.8 96.7 999 98.7 99.8 41.6 99.7 999 983 84.3|93.5+0.12
ROID (ours) | 71.7 622 62.2 69.6 66.5 57.1 493 523 574 43,5 334 59.1 454 41.8 46.2 | 54.54+0.10
Source 71.1 700 754 728 81.6 63.8 682 579 50.8 40.7 28.6 60.5 72.1 86.6 593 64.0
_ | TENT-cont. | 67.0 62.0 635 79.2 78.6 653 673 59.1 557 520 325 629 734 826 593 |64.0£0.15
'E EATA 63.1 555 547 674 640 54.1 545 524 46.8 444 26.1 47.0 550 61.0 46.2 | 52.840.14
E SAR 63.6 574 581 757 735 657 650 609 594 577 312 724 719 81.1 624 |63.7+£1.23
E; CoTTA 63.8 584 583 762 739 65.1 693 62.1 524 505 353 51.8 612 60.6 500 |59.3+1.23
< | RoOTTA 71.0 69.0 73.1 729 79.7 62.0 66.8 56.1 48.0 422 287 56.7 68.1 88.1 57.8|62.7+0.10
%)0 AdaContrast | 63.3 60.1 599 72.6 81.1 656 674 547 463 513 273 47.8 645 604 494 |58.1+0.11
E RMT 60.4 52.6 525 748 683 58.0 61.8 52.0 482 429 334 49.6 508 41.6 429 | 52.6+£1.00
~ | LAME 88.6 765 875 843 975 86.6 803 99.6 994 96.8 28.8 90.0 99.7 95.1 61.8 | 84.840.29
ROID (ours) | 58.0 51.6 514 629 57.6 499 475 442 399 36.2 242 439 445 504 42.5|47.0+0.26
Source 658 67.3 653 68.8 744 643 66.6 568 452 486 29.2 81.8 57.1 60.8 502 60.2
o TENT-cont. | 63.6 59.8 58.0 65.8 682 58.0 614 539 454 479 282 61.2 535 50.8 424 |54.5+0.04
E EATA 61.5 553 537 60.2 587 52.6 548 51.1 435 428 289 49.1 488 463 39.7 | 49.8+0.14
= | SAR 61.2 557 543 62.1 614 540 57.1 538 452 457 29.0 53.8 51.7 50.0 40.3 | 51.7+0.02
c CoTTA 7277 79.6 757 825 803 757 759 79.7 689 744 705 96.7 742 74.6 7T4.1|77.0£13.3
E_'.) ROTTA 658 66.7 645 68.6 729 625 64.8 551 435 444 279 77.8 539 58.5 483 |58.3+0.13
% AdaContrast | 65.3 62.8 60.0 674 73.1 63.0 664 56.0 442 498 289 724 549 476 425 |57.0+0.19
2 | RMT 758 748 698 78.1 735 66.0 69.8 805 713 735 688 80.6 73.0 68.2 69.7|729+12.0
E LAME 955 81.6 975 72.0 899 969 939 96.1 488 99.8 294 999 824 64.7 50.5 | 79.9+0.19
ROID (ours) | 57.6 51.5 52.2 551 524 46.5 47.2 45.6 39.5 36.0 26.0 450 438 39.7 36.3 | 45.0+0.09




Table 13. Online classification error rate (%) for the corruption benchmarks at the highest severity level 5 for the mixed domains TTA setting.
For CIFAR10-C the results are evaluated on WideResNet-28, for CIFAR100-C on ResNeXt-29, and for Imagenet-C, ResNet-50, Swin-b and
ViT-b-16 are used. We report the performance of each method averaged over 5 runs.

F < & 5 . 5 s s = < 5 e 2
2 S i Q % S < < 8 s & )
Method (55 s ' §§ %9 ?’tg § § 50 @‘:o <§0 .gc,o § § g i é: Mean
Source 723 657 729 469 543 348 420 251 413 260 93 467 26.6 584 303 435
BN-1 455 428 59.7 342 443 29.8 320 198 21.1 21.5 93 279 33.1 555 30.8| 33.840.04
TENT-cont. | 73.5 70.1 814 31.6 60.3 29.6 285 30.8 353 257 136 442 326 702 349 | 44.14+3.82
o EATA 364 335 515 241 389 234 215 198 198 215 11.4 320 27.1 422 253 | 28.6+0.7
& | SAR 455 427 59.6 34.1 443 29.7 319 198 21.1 215 93 278 330 554 30.8| 33.840.04
% CoTTA 38.7 360 56.1 360 368 323 31.0 199 17.6 272 11.7 52.6 305 358 257 | 32.5+1.35
& | RoTTA 60.0 555 700 238 44.1 20.7 21.3 202 227 160 94 227 270 586 29.2| 33.4+0.15
© | AdaContrast | 367 343 48.8 182 39.1 21.1 17.7 18.6 183 168 9.0 174 277 448 249 | 262+0.11
RMT 42.8 397 550 28.5 38.6 265 259 19.6 189 206 122 273 269 569 259| 31.04+0.75
LAME 87.8 86.5 88.0 79.5 83.0 724 768 675 78.1 68.7 49.8 78.1 69.3 753 66.9 | 75.240.12
ROID (ours) | 37.1 343 509 248 38.1 225 220 188 185 188 9.9 256 272 457 262 | 28.0+0.12
Source 73.0 68.0 394 293 54.1 30.8 28.8 39.5 458 503 295 551 372 747 412 46.4
BN-1 62.7 60.7 43.1 355 503 357 344 399 38.8 51.5 275 455 423 728 46.4 | 458+0.04
TENT-cont. | 95.6 952 89.2 72.8 829 744 723 780 79.7 847 710 885 77.8 968 78.7| 82.5+1.45
o | EATA 424 40.1 342 30.1 427 31.7 293 356 358 437 302 420 369 38.1 40.6| 36.9+0.21
8' SAR 75.8 7277 41.1 292 452 31.1 289 36.7 37.7 439 293 41.8 37.1 89.2 424 | 4554+0.24
~ | CoTTA 544 527 498 36.0 458 36.7 339 389 358 52.0 304 609 402 38.0 41.1| 43.1£0.05
é RoTTA 650 623 393 334 500 342 326 36.6 36.5 450 264 41.6 40.6 89.5 485 | 45.4+0.14
O | AdaContrast | 54.5 51.5 37.6 30.7 454 321 303 369 365 453 280 427 382 754 41.7| 41.8+0.05
RMT 526 499 322 31.0 405 31.8 304 334 339 40.6 278 369 353 650 381 | 38.6+0.15
LAME 98.5 985 982 982 984 983 982 983 983 985 982 984 984 988 984 | 98.4+0.04
ROID (ours) | 40.5 38.0 32.0 28.1 40.5 29.7 27.6 34.1 338 413 287 387 343 39.7 385 | 35.0+0.04
Source 97.8 97.1 982 81.7 89.8 852 779 835 77.1 759 413 945 825 793 68.6 82.0
BN-1 92.8 91.1 92,5 87.8 90.2 87.2 822 822 820 79.8 48.0 925 835 756 704 | 82.54+0.06
S | TENT-cont. | 99.2 98.7 99.0 90.5 95.1 90.5 84.6 86.6 84.0 86.5 46.7 98.1 86.1 77.7 729 | 86.4%1.35
2 EATA 90.1 88.1 90.1 76.5 809 73.8 68.5 714 69.5 63.5 42.1 932 69.7 52.4 548 | 72.3+1.57
& | SAR 984 973 98.0 840 873 826 772 715 76.1 725 43.1 96.0 783 61.8 604 | 79.4+0.75
8 CoTTA 89.1 86.6 885 809 872 81.1 758 733 752 70.5 41.6 85.0 78.1 656 61.6| 76.0+0.17
% RoTTA 894 886 893 834 89.1 862 80.0 789 769 742 374 89.6 79.5 69.0 59.6| 78.1+0.07
e | AdaContrast | 96.2 955 962 932 964 963 90.5 927 919 924 508 97.0 96.6 89.7 87.1| 90.840.11
E | RMT 87.0 846 866 799 865 80.8 743 70.2 740 69.9 457 86.4 781 64.8 61.6| 75.4+0.19
LAME 99.4 993 995 952 973 959 939 955 939 93.8 843 985 953 942 91.3| 95.1£0.39
ROID (ours) | 76.4 753 761 779 81.7 75.1 69.9 709 688 643 425 854 69.8 530 556| 69.5+0.13
Source 71.1 700 754 72.8 81.6 63.8 682 579 508 40.7 286 605 72.1 86.6 593 64.0
__ | TENT-cont. | 65.8 639 682 734 753 59.1 645 60.0 579 49.1 288 614 722 81.6 56.9 | 62.6+0.12
’2 EATA 61.7 604 614 658 68.7 528 58.1 54.1 50.8 46.1 272 51.0 634 720 51.5]| 56.3+£0.18
E SAR 64.1 623 649 714 71.8 575 62.0 58.8 56.0 51.0 29.0 59.5 684 773 543 | 60.6+0.62
5 CoTTA 545 549 559 779 798 67.1 709 628 59.1 537 373 604 703 87.5 57.7| 63.3+7.69
% | RoTTA 674 658 702 729 788 627 6777 537 48.5 432 288 585 702 878 62.0]| 62.6+0.11
%ﬂ AdaContrast | 62.7 61.5 63.5 75.1 83.5 743 719 677 71.6 729 29.0 535 79.6 69.5 535 | 66.0+0.80
g RMT 49.0 48.1 492 679 724 585 627 564 520 547 337 513 62.1 63.5 49.0 | 5544+4.54
~ | LAME 716 704 759 732 820 644 68.6 58.6 51.9 422 295 61.7 727 869 59.8| 64.6+0.12
ROID (ours) | 61.1 59.6 60.8 664 67.3 534 573 51.0 451 43.1 262 526 59.6 71.1 509 | 55.0+0.26
Source 658 673 653 688 744 643 66.6 56.8 452 48.6 29.2 81.8 57.1 60.8 50.2 60.2
& | TENT-cont. | 60.6 604 59.6 63.6 678 57.1 612 550 488 474 286 667 53.9 504 444 | 55.0+0.08
z EATA 59.2 577 578 59.0 63.1 52.6 58.2 51.1 465 442 28.6 58.6 509 47.0 419 | 51.840.14
= | SAR 589 576 576 594 636 53.0 585 523 47.1 454 283 61.6 514 474 420 | 52.3+0.11
Z | CoTTA 89.4 92.0 889 93.6 92.6 90.6 865 949 882 86.6 758 96.5 857 93.5 84.6| 89.3+6.18
8 RoTTA 644 656 637 676 713 59.8 64.1 527 43.5 48.6 279 785 543 604 50.1| 582+0.06
% AdaContrast | 64.8 634 633 728 76.6 737 746 67.7 48.0 89.6 30.2 932 60.8 57.3 463 | 65.5+0.15
2 | RMT 76.6 76.1 765 78.1 78.0 726 724 804 67.8 712 550 946 69.3 665 652 | 73.4+13.44
'—84 LAME 679 69.1 674 70.6 757 663 684 592 48.1 53.8 33.1 846 593 628 52.8| 62.6+0.16
ROID (ours) | 58.3 57.2 573 574 61.6 521 583 49.7 44.1 42.1 272 558 50.6 47.0 41.5| 50.74+0.08




Table 14. Online classification error rate (%) in the correlated TTA setting where samples are sorted by class. The corruption datasets are
evaluated at the highest severity level 5. We report the performance of each method averaged over 5 runs.

Dataset Architecture | Source  TENT EATA SAR CoTTA RoTTA AdaCont. RMT LAME | ROID (ours)
CIFAR10-C | RN-26 GN 32.7 87.6 40.8 37.1 445 33.7 30.5 575 113 15.9+0.27
IN-C Swin-b 64.0 86.7 742 593 995 75.5 77.6 99.6 470 18.54+0.10
ViT-b-16 60.2 80.6 762 539 98.8 65.1 87.4 99.6  44.1 16.84+0.72
IN-R Swin-b 54.2 53.6 539 531 589 54.1 56.9 48.1  13.6 25.240.37
ViT-b-16 56.0 534 536 499 810 55.8 62.1 85.8  13.0 25.8+0.13
IN-Sketch Swin-b 68.4 674 663 723 953 68.1 66.9 91.8 58.2 43.9+0.19
ViT-b-16 70.6 66.7 637 746 955 70.1 72.3 979 61.0 44.0+0.14
IN-D109 Swin-b 514 68.5 539 555 585 50.5 52.1 51.9 304 30.6+0.16
ViT-b-16 53.6 843 574 587 93.1 53.8 56.7 90.6 354 31.7+0.08

Table 15. Online classification error rate (%) for the corruption benchmarks at the highest severity level 5 for the correlated TTA setting. For
CIFAR10-C the results are evaluated on ResNet-26 with group norm (RN-26 GN). For Imagenet-C, Swin-b, and ViT-b-16 are used. We
report the performance of each method averaged over 5 runs.

Time t
'5? s & 5 o 5 A >3 g g g §

Method §§.§§§§§§§@%§§§§.§Mean
Source 484 448 503 241 47.8 245 24.1 241 331 280 141 297 256 437 283| 327
o | TENT-cont. | 62.3 82.6 89.9 89.4 900 90.0 900 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0|87.6:0.98
G | EATA 393 309 42.6 303 454 249 336 367 361 414 360 475 52.6 629 51.0|40.8+1.62
§ | sAR 486 556 63.8 234 558 20.1 249 30.6 33.1 26.1 145 27.8 31.6 585 33.0|37.1+L12
% | CoTTA 353 339 393 303 50.1 439 440 37.8 440 60.6 223 621 57.6 480 49.5|44.5+1.39
Q | RoTTA 492 472 550 219 50.5 23.1 200 279 36.6 294 152 27.9 264 438 31.0|33.7+0.19
= | AdaContrast | 42.5 33.0 463 23.1 50.0 242 23.0 272 208 23.1 190 227 269 414 255 30.5+0.14
£ |RMT 573 574 666 268 648 408 420 547 630 667 562 674 70.5 624 663 |57.54530
O | LAME 260 238 252 53 127 43 49 52 69 62 48 115 40 246 44 |11.3+021

ROID (ours) | 26.6 13.9 285 89 38.1 61 61 183 108 77 56 92 136 335 11.0|159+027
Source 704 69.9 755 72.8 819 644 68.6 579 50.5 40.7 292 59.8 726 87.0 588| 640
TENT-cont. | 614 57.5 599 766 763 80.1 93.0 97.6 99.7 99.9 989 99.8 99.8 99.8 99.7 | 86.7+0.90
2 | EATA 647 71.6 77.1 813 789 759 739 717 717 711 544 81.6 783 834 77.3|74.2+2.42
2 | sAR 623 587 597 80.9 79.5 60.5 655 668 59.8 525 274 465 692 53.0 47.5|59.3+0.57
5 | CoTTA 942 99.9 99.9 99.6 99.9 99.9 99.9 99.9 999 99.9 99.8 99.9 99.8 99.9 99.7|99.5+0.17
% | RoTTA 69.4 66.6 708 82.5 79.8 764 768 628 589 762 479 952 77.3 983 94.2|75.5+0.29
%5, | AdaContrast | 61.8 612 662 789 84.1 817 821 755 707 824 620 858 89.0 925 90.0 | 77.620.14
£ |RMT 959 99.9 99.9 99.9 99.9 99.9 99.9 99.9 999 999 99.9 99.9 99.9 99.9 99.9 |99.6+0.06
LAME 430 420 462 528 69.7 434 511 445 364 339 204 413 644 727 44.0|47.040.10
ROID (ours) | 25.8 229 227 332 313 188 210 140 120 112 69 155 13.6 147 14.6 | 18.5+0.10
Source 660 668 649 68.5 747 640 669 573 450 494 287 818 578 60.8 499| 602
| TENT-cont. | 58.7 53.9 543 584 586 527 73.6 99.4 99.8 999 999 99.9 99.9 99.9 99.9 |80.6+0.05
= | EATA 59.6 63.5 689 77.0 754 774 754 728 702 772 650 97.9 880 87.7 87.0 |76.2+4.53
£ | SAR 558 517 550 57.5 569 503 583 646 550 487 41.0 553 50.1 50.2 48.9|53.9+115
Z | CoTTA 958 99.5 99.5 989 982 97.6 960 99.7 99.7 99.0 99.5 99.8 99.6 99.4 99.7 | 98.8+0.68
2 | RoTTA 663 67.0 69.9 70.5 702 589 648 60.4 550 560 343 79.6 612 87.5 74.3[65.1+0.15
Z | AdaContrast | 662 70.4 787 81.7 87.3 835 91.7 89.8 90.6 944 873 945 966 97.1 96.9 |87.4+0.10
2 | RMT 958 99.9 99.9 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.9 99.8 99.8 99.8 [99.6+0.14
~ | LAME 40.1 39.1 39.3 486 58.6 43.1 484 39.5 34.1 423 237 848 445 40.1 358 |44.140.02
ROID (ours) | 25.7 23.0 23.8 29.0 219 19.0 18.1 148 122 102 64 149 123 99 10.1|168+0.72




Table 16. Online classification error rate (%) for ImageNet-C at the highest severity level 5 for the mixed domains correlated TTA setting
with the Dirichlet concentration parameter 6 = 0.01. We report the performance of each method averaged over 5 runs.

f . & 5 2 5§ ™ s £ & £

Method O§ § | §§ ﬁ’ ?f g* sés § ;é? 99% _,‘5§ §;~ § é? . é’?o Mean

Source 704 699 755 728 819 644 68.6 579 50.5 40.7 29.2 59.8 72.6 87.0 58.8 64.0
—2 SAR 70.8 68.8 712 734 762 614 66.0 653 61.1 56.7 328 62.0 73.2 79.6 55.7|64.94+0.81
E LAME 374 374 374 376 37.8 374 37.7 372 37.0 37.3 365 37.5 37.6 37.8 37.2|37.440.12

ROID (ours) | 30.9 30.1 31.0 34.8 37.2 264 31.1 268 22.8 23.2 123 27.0 33.6 36.4 252 |28.6+0.16
©° Source 66.0 66.8 649 68.5 747 640 66.9 573 450 494 287 81.8 57.8 60.8 499 60.2
E SAR 645 629 632 59.0 64.1 528 60.6 54.8 49.6 474 30.6 59.1 535 49.0 429 |54.34+0.59
.E} LAME 36.2 36.1 36.1 36.3 363 36.1 364 36.1 358 36.1 354 36.6 359 36.0 35.7|36.1+0.15
> ROID (ours) | 27.0 26.2 26.1 26.1 32.0 234 29.2 234 194 18.6 10.8 26.6 25.5 21.5 17.7 | 23.6+0.05

Table 17. Average online classification error rate (%) over 5 runs for different configurations for a) the continual TTA setting and b) the
mixed domains TTA setting. For the ImageNet variants, a ResNet-50 is used. For CIFAR10-C and CIFAR100-C, the results are evaluated
utilizing a WideResNet-28 and a ResNeXt-29, respectively.

a) continual b) mixed domains
=~ S
T < o Y ¢ N
s § 5 F 7 s s § F s
Method X & ‘5 5 = 2 Mean X > ‘5 2 Mean
§ g & & & 3 § g & &
o & £ £ £ 5 g &§ & £
Source 435 464 820 638 759 58.8 61.7 || 43.5 464 820 58.8 57.7
TENT 200 622 626 576 @ 69.5 52.9 54.1 || 441 825 864 56.1 67.3
SLR 20.1 577 615 556 678 52.7 52,6 || 428 782 874 58.2 66.7
+ Loss weighting 177  31.1 60.8 511 64.1 52.0 46.1 || 269 352 72.1 51.6 46.4
+ Weight ensembling | 17.7 29.5 562 523 65.5 48.9 450 || 29.1 354 714 51.5 46.9
+ Consistency 163 293 544 512 64.2 48.1 43.9 284 351 69.6 51.0 46.0
+ Prior correction 16.2 293 545 512 643 48.0 439 || 28.0 350 69.5 50.9 45.9

Table 18. Average online classification error rate (%) over 5 runs for different configurations for a) the correlated TTA setting and b) the
mixed domains correlated TTA setting. For the ImageNet variants, a ViT-b-16 is used, while for CIFAR10-C a ResNet26-GN is applied.

a) correlated b) mixed + correlated
Q Q
o 9 & ¥ N SN N
S 5 g ) Q S g Q
> & ) > )
Method & =l < = 2 Mean | & =l 2 Mean
§ & 5 § §
c 5§ §F 5§ ¢ o 5 g
Source 327 602 560 706 53.6 | 54.6 || 32.7 60.2 53.6 | 48.8
TENT 876 80.6 534  66.7 843 | 745 || 882 813 71.3 823
SLR 89.0 903 523 78.0 90.4 | 80.0 || 88.3 887 874 | 88.1
+ Loss weighting 29.1 91.6 504  63.1 67.6 | 604 || 419 889 52,6 | 6l1.1
+ Weight ensembling | 28.1 447 49.8  61.7 492 | 46.7 || 31.0 539 498 | 449
+ Consistency 295 425 480 605 48.1 | 457 || 31.0 515 488 | 43.8
+ Prior correction 159 168 258 44.0 31.7 | 268 || 174 23.6 294 | 235




D. Comparison to Related Work

Comparison with COTTA While both CoTTA and our proposed method utilize source weights, CoTTA uses stochastic
restoring, where with a small probability current weights are restored with the corresponding weights from the source model.
The idea behind stochastic restoring is that the network avoids drifting too far away from the initial source model. But, as
discussed in Section B.2, CoTTA first of all cannot prevent catastrophic forgetting on the continual ImageNet-C benchmark
with 50,000 samples per corruption and, second, shows instabilities for certain domain shifts or settings. Instead of performing
a stochastic restore, our proposed weight ensembling, which continually ensembles the weights of the initial source model and
the weights of the current model, prevents catastrophic forgetting and mostly preserves the generalization capabilities of the
initial source model.

Comparison with EATA EATA, like our proposed method, utilizes certainty and diversity weighting. However, their
weighting scheme relies on dataset-specific hyperparameters, such as an entropy threshold and a cosine similarity threshold.
While the entropy threshold is determined heuristically, the cosine similarity threshold needs to be manually specified for
each dataset. Choosing an inappropriate cosine similarity threshold can lead to a significant decrease in performance. For
example, switching the cosine similarity threshold of CIFAR10-C and CIFAR100-C reduces the performance by absolutely
2.7% and 10.8%, respectively. In contrast, our proposed diversity weighting scheme does not necessitate dataset-specific
hyperparameters and has demonstrated success across a wide range of different datasets, models, and domain shifts, as
validated by our experiments. To address catastrophic forgetting, EATA incorporates elastic weight consolidation, which
requires access to source samples for computing the Fisher information matrix. As discussed in Appendix B.2, our proposed
weight ensembling approach also effectively mitigates catastrophic forgetting without the need for source data availability.
Furthermore, EATA does not only exhibit instabilities when dealing with correlated data, but also demonstrates impractical
performance outcomes in this setting due to not employing any prior correction.



