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In this supplementary material, we first give an overview
of the different task definitions and the corresponding ab-
breviations used in the paper and supplementary material.
Next, we describe the details of the model architecture and
training in Sec. 2. Then, we provide more insights into the
experiments presented in the main paper and provide ad-
ditional results on less popular tracking datasets in Sec. 3.
Then, we show visual results between the baseline and our
tracker on multiple sequences of the proposed datasets in-
cluding failure cases 4. Next, we discuss the limitations of
the proposed tracker in Sec. 5. Finally, we provide addi-
tional insights about our dataset and compare it to datasets
of related tasks in Sec. 6.

1. Glossary
In this Section we will briefly summarize the different

task definitions behind the individual abbreviations:
GOT. Generic Object Tracking refers to the task of tracking
potentially multiple user-defined target objects of arbitrary
classes specified by a user-specified bounding box in the
initial video frame.
SOT. Singe Object Tracking is the same task as GOT but
focuses on the setting where only a single generic object
needs to be tracked.
Multi-Object GOT. The same as GOT but emphasizes that
multiple-objects need to be tracked. We use multi-object
GOT because GOT is in other research works sometimes
used interchangeably with SOT.
MOT. Multi Object Tracking is completely different from
the tasks listed above because it requires a class category
list to detect and track all objects corresponding to the de-
fined class categories.
GMOT. Generic Multi Object Tracking is the same as
MOT but instead of using a class category list to define the
target objects, a single user-specified box shows an exam-
ple object of the target class category. Thus, all objects that
belong to the same class as the user-specified example need
to be detected and tracked.

*Work done while interning at Google Research.

2. Model Architecture and Training Details

Architecture. We extract backbone features either from
the ResNet-50 or the SwinBase backbone. For both back-
bones we extract the features corresponding to the blocks
with stride 8 and 16. We only use the features with stride 16
for object encoding and feed these features into the model
predictor. For both backbones we use a linear layer to de-
crease the number of channels from 1024 to 256 or 512 to
256 respectively. Thus we use 256 dimensional object em-
beddings ei and a Multi-Layer Perceptron (MLP) to project
the LTRB bounding box encoding map from 4 to 256 chan-
nels. Since the model predictor produces 256 dimensional
convolutional filters we require the same number of chan-
nels for the Feature Pyramidal Network (FPN) output fea-
tures. In particular we use a two layer FPN that uses as in-
put the enhanced Transformer encoder output features cor-
responding to the test frame as well as the aforementioned
high resolution backbone test features. The high resolu-
tion input features have either 512 or 256 channels for the
Resnet-50 or the SwinBase backbone respectively. Thus,
we adapt the FPN accordingly depending on the used back-
bone.
Training Details. Since our tracker operates on full
frames, we retain the full training and testing frames. The
frames are re-scaled and padded to a resolution of 384×576.
As we use the feature maps with stride 16 for both the
ResNet-50 [14] and SwinBase [18] backbones, this results
in an extracted feature and score map resolution of 24× 36.
For ResNet-50 we use pretrained weights on ImageNet-1k
and for SwinBase on ImageNet-22k. We use a fixed size
Gaussian when producing the score map encoding for each
object where σ = 0.25. Furthermore, we use gradient norm
clipping with the parameter 0.1 in order to stabilize train-
ing. In addition, we employ data augmentation techniques
during training such as random scaling and cropping in ad-
dition to color jittering and randomly flipping the frame.
The regression loss is given by

Lbbreg =

n∑
i=0

LGIoU

(
b̂ltrbi , b̂ltrbi

)
, (1)
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(b) Precision-Recall

Figure 1. Success plot, showing OPT , on LaGOT (AUC is reported in the legend). Tracking Precision-Recall curve on LaGOT – VOTLT
is reported in the legend (the highest F1-score).

where LGIoU denotes the generalized IoU-Loss [26]. The
overall training loss is then defined as

Ltot = λclsLcls(ŷ, y) + λbbreg · Lbbreg(b̂
ltrb, bltrb) (2)

where λcls = 100 and λbbreg = 1 are scalars weighting the
contribution of each loss component. We use ADAMW [19]
with a learning rate of 0.0001 that we decay after 150 and
250 epochs by a factor of 0.2 and train all models on four
A100 GPUs with a batch size of 4× 12 or 4× 6.
Inference. During inference we adopt the simple memory
updating approach described in [20]. In particular, updat-
ing the memory refers to adding a second dynamic train-
ing frame using predicted box annotations. We replace the
second training frame (update the memory) if the maximal
value in each score map is above the threshold of τ = 0.85.

For accurate bounding box prediction and localization
we employed an FPN. In contrast to training, where we
applied the target models directly on the Transformer en-
coder features and also on the low- and high-resolution FPN
feature maps, we only use the high-resolution score and
bounding box prediction maps during inference. We em-
pirically observed better training performance when apply-
ing the losses on each instead of only on the high resolution
outputs. However, during inference we are only interested
in the high resolution predictions.

3. Experiments
We provide more detailed results to complement the

comparison shown in the main paper. In addition we pro-
vide result for the LaSOTExt [10] dataset in order to as-

Table 1. Comparison of the combination of GOT and MOT meth-
ods. GOT return the detections and the MOT methods are used for
object association over time on LaGOT.

GOT MOT F1-Score Success HOTA MOTA IDF1

TaMOs-SwinBase
— 0.643 63.1 62.1 58.2 74.7
SORT [2] 0.438 35.7 45.9 52.2 43.3
ByteTrack [33] 0.459 37.7 50.4 57.1 53.9

MixFormerLarge-22k
— 0.619 62.4 61.5 52.3 74.3
SORT [2] 0.418 34.0 45.6 43.9 44.9
ByteTrack [33] 0.450 36.4 47.5 44.8 49.6

sess the performance of our tracker on sequences containing
small objects. Similarly, we analyze the capability of our
tracker to handle adverse tracking conditions on AVisT [24].
Furthermore, to provide results on another multiple object
dataset we run the tracker on ImageNetVID [27].

3.1. LaGOT

To complement the results shown in the main paper, we
report in Fig. 1 and Tab. 2 results for additional trackers
and different variants, such as using a different backbone or
different hyper-parameters. In Tab. 2 we report additional
Multiple Object Tracking (MOT) sub-metrics and statis-
tics on LaGOT. In general we conclude, that using larger
backbones especially if they are pretrained on ImageNet-
22k leads to the best results. Furthermore, we observe that
the MOT methods QDTrack and OVTrack (evaluated with
default parameters provided in the OVTrack GitHub repos-
itory1) are not competitive with Generic Object Tracking

1https://github.com/SysCV/ovtrack



Table 2. Comparison of different trackers using MOT metrics on LaGOT.

HOTA DetA AssA DetRe DetPr AssRe AssPr LocA OWTA MOTA IDSW IDF1

GOT TaMOs-SwinBase 62.1 57.3 68.4 69.9 69.9 75.9 75.9 84.2 68.9 58.2 6734 74.7
TaMOs-50 60.0 54.6 66.9 67.7 67.7 74.5 74.5 84.0 67.1 52.9 7901 72.0

SOT

MixformerLarge-22k 61.5 53.8 70.9 67.4 67.4 77.8 77.8 84.8 69.0 52.3 3150 74.3
Mixformer-22k 61.2 54.0 70.0 67.4 67.4 77.0 77.0 84.5 68.6 53.2 3339 74.4
ToMP-101 60.1 53.0 68.8 66.4 66.4 76.2 76.2 83.9 67.5 51.9 2638 73.8
ToMP-50 60.0 53.0 68.6 66.4 66.4 76.0 76.1 83.8 67.4 52.3 2378 74.0
STARK-ST-101 59.4 51.8 68.8 65.6 65.6 75.9 75.9 84.2 67.1 49.0 3568 72.5
STARK-ST-50 59.4 51.9 68.5 65.6 65.6 75.6 75.6 83.9 66.9 49.5 4277 72.6
TransT 57.8 50.2 67.1 64.3 64.3 74.5 74.6 84.3 65.6 46.6 2323 70.7
KeepTrack 59.1 52.3 67.3 65.4 65.4 74.7 74.7 82.3 66.2 51.3 2299 73.8
SuperDiMP 56.1 48.3 65.8 62.1 62.1 73.5 73.5 82.2 63.8 43.2 1966 69.7
PrDiMP-50 53.0 45.6 62.1 59.6 59.6 70.3 70.4 81.3 60.7 38.4 2380 66.6
PrDiMP-18 51.4 42.8 62.2 57.2 57.2 70.2 70.3 81.3 59.5 31.9 1981 63.4
DiMP-50 50.8 42.1 62.0 56.2 56.2 69.7 69.7 80.2 58.9 29.4 1680 62.1
DiMP-18 48.1 39.3 59.6 53.5 53.5 67.6 67.6 79.5 56.3 23.2 1757 59.0

MOT QDTrack 22.2 17.3 29.0 46.2 21.0 30.3 80.0 81.8 36.3 -115.8 18521 16.3
OVTrack 24.4 20.3 29.9 22.7 59.7 31.2 78.2 82.0 25.9 13.9 4951 23.5
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(a) LaSOT
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(b) AViST

Figure 2. Success plot, showing OPT , on LaSOT [11] and AVisT [24] (AUC is reported in the legend).

(GOT) methods. In particular, we observe that QDTrack
and OVTrack achieve very low OWTA scores that depend
on the Detection Recall (DetRe) and the Association Ac-
curacy (AssA) scores. OVTrack scores the lowest DetRe
despite being an open-vocabulary detector. While this is
an expected limitation, we further observe that QDTrack
achieves by far the lowest AssA caused by the poor Asso-
ciation Recall (AssRe) of 30.3 compared to DiMP-18 that
achieves 67.6.

In addition to the Single Object Tracking (SOT) and
MOT baselines presented in the main paper, we also evalu-
ate an open-world tracker [17]. Such a tracker aims at track-
ing all objects in the scene and should therefore also be able

to track the generic objects contained in LaGOT. In particu-
lar, we follow Liu et al. [17] and generate object proposals
for each video frame using their provided open-world de-
tector. Then, we run SORT [2] on top of the generated pro-
posals using the default parameters. This leads to an OWTA
score of 12.58, AssA of 3.57 and DetRe of 46.72. We con-
clude that the complex videos with long tracks of the pro-
posed benchmark are for now too challenging for existing
open-world trackers.

Finally, we add another experiment where we use our
tracker TaMOs or the SOT tracker Mixformer as one-shot
object detectors and feed their detections and scores to a
MOT tracker that focuses on building the final tracklets. In



Table 3. Comparison to the state of the art on LaSOTExt [10].

LaSOTExt [10]
Method Venue Prec N-Prec Succ

TaMOs-SwinBase 58.0 57.8 49.2
TaMOs-Resnet-50 54.1 55.0 46.7

AiATrack [13] ECCV’22 54.7 58.8 49.0
OSTrack [31] ECCV’22 57.6 61.3 50.5
ToMP-101 [20] CVPR’22 52.6 58.1 45.9
ToMP-50 [20] CVPR’22 51.9 57.6 45.4
GTELT [34] CVPR’22 52.4 54.2 45.0
KeepTrack [21] ICCV’21 54.7 61.7 48.2
SuperDiMP [6] CVPR’20 49.0 56.3 43.7
LTMU [4] CVPR’20 45.4 53.6 41.4
DiMP [3] ICCV’19 43.2 49.6 39.2
ATOM [5] CVPR’19 41.2 49.6 37.6

Table 4. Analysis of the FPN and the zooming mechanism on
LaSOTExt [10] and UAV123 [22].

LaSOTExt UAV123
Backbone FPN Zoom AUC AUC

Resnet-50 ✗ ✗ 41.3 56.2
Resnet-50 ✓ ✗ 43.1 58.2
Resnet-50 ✓ ✓ 46.7 64.2

SwinBase ✗ ✗ 43.9 56.5
SwinBase ✓ ✗ 44.6 57.3
SwinBase ✓ ✓ 49.2 66.2

particular we use the popular SORT [2] tracker and the re-
cent state-of-the-art tracker ByteTrack [33]. For TaMOs and
Mixformer, using their predicted bounding boxes and object
ids leads to far better results than using an MOT method on
top for post-processing. This behaviour holds when mea-
suring the performance of the resulting trackers with GOT
as well as with MOT metrics, see Tab. 1. While there is
potential to increase the robustness of GOT trackers in case
of multiple objects, directly applying MOT trackers is not a
good solution. Instead dedicated association algorithms for
multi-object GOT are needed. We conclude, that TaMOs
and the proposed SOT trackers run in parallel, are solid
baselines for LaGOT.

3.2. LaSOT

In addition to the result table, shown in the main paper,
we show in Fig. 2a the success plot for LaSOT [11]. We
observe that our tracker is the most robust (T < 0.3). Fur-
thermore, the plot shows that both MixFormerLarge-22k
and OSTrack can regress more accurate bounding boxes
(0.5 < T < 0.9). However, unlike these specialized single-
target object trackers, our approach is capable of jointly
tracking multiple targets.

3.3. LaSOTExt

Since our tracker always operates on the full frame with-
out the help of a local search region, tracking small ob-
jects is challenging. Thus, we integrated an FPN in our
tracker to improve the tracking accuracy. To analyze our
tracker on small objects we run it on LaSOTExt [10] and
UAV123 [22]. Tab. 4 shows that including an FPN improves
the tracking results on both datasets but is more effective
when using a Resnet-50 as backbone.

To track small objects a high feature map resolution is
desirable. To better cope with extremely small objects,
found in some SOT benchmarks, we add a simple zoom-
ing mechanism. In particular, when the target is smaller
that 30 × 30 pixels, we crop a region of the image that en-
sures this minimal target size when up-scaled to the input-
resolution of 384 × 576. Tab. 4 clearly shows that using
such a zooming mechanism improves the results on LaSO-
TExt and UAV123 considerably, due to the presence of ex-
tremely small objects in these datasets.

Tab. 3 shows that our tracker with FPN and zooming
achieves competitive results on LaSOTExt. In particular it
achieves the highest precision and the second highest suc-
cess AUC only being outperformed by OSTrack [31].

3.4. AVisT

In order to validate our tracker in adverse visibility sce-
narios we run it on AVisT [24]. Fig 2b shows that our
tracker achieves excellent results with a success AUC of
55.1. This result shows that our tracker is able to track
generic single objects even in visually challenging scenar-
ios. The best tracker MixFormerLarge-22k is able to regress
more accurate bounding boxes (0.3 < T < 0.9), as it relies
on small search area selection to ensure high-resolution fea-
tures. In contrast, our approach is capable of jointly tracking
multiple objects.

3.5. ImageNetVID

In order to validate the proposed multiple object GOT
tracker not only on LaGOT but also on another multiple
object dataset, we modify ImageNetVID [27]. Since Im-
ageNetVID is a video object detection datasets instead of a
GOT dataset we perform the following adaptations. First,
we remove all tracks that are not present in the first frame.
Then, we use the remaining tracks to produce the bound-
ing box annotations of the first frame. For simplicity we
remove the 11 sequence where no track is visible in the first
frame. This results in 544 sequences with 938 tracks and 1.7
tracks on average per video. Fig. 4 shows the success plot
on the resulting multiple object GOT dataset. We observe
that all trackers achieve relatively high AUC mostly differ-
ing in bounding box accuracy. Both versions of our tracker
outperform the baselines ToMP-50 and ToMP-101 [20]. In
particular, we notice the superior bounding box accuracy of
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Figure 3. Visual comparison between the proposed tracker (Ours-SwinBase) and the baseline ToMP-101 on different LaGOT sequences.
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Figure 4. Success plot, showing OPT , on ImagenetVID [27] (AUC
is reported in the legend).

our tracker compared to ToMP. To summarize we observe a
similar ranking between trackers on ImageNetVID and the
proposed LaGOT dataset. However, LaGOT is more chal-
lenging due to the higher average track number (2.9 vs. 1.7)
and the much longer sequence length (2258 vs. 312) that
leads more frequently to occlusions and out-of-view events.

4. Visual Results

Visual Comparison to the State of the Art. We show
visualizations of the tracking results of the baseline (ToMP-
101) and our proposed tracker (TaMOs-SwinBase) on four
different sequences of the proposed LaGOT benchmark in
Fig. 3. The first frame specifies the target objects annotated
with bounding boxes that should be tracked in the video.
The other frames show predictions of both trackers. The re-
sults on the first and third sequences demonstrate that our
tracker can re-detect occluded objects quickly whereas a
search area based tracker is not able to re-detect the tar-
gets if they reappear outside of the search area. The second
and fourth sequences show the superior robustness of our
tracker. It is able to distinguish similarly looking objects
better without confusing their ids. For more visual results
we refer the reader to the mp4-videos submitted alongside
this document. Each video shows the predictions of the pro-
posed tracker TaMOs-SwinBase on the proposed LaGOT
benchmark. Please note that we always produce a bounding
box for visualization independent of its confidence score.
Failure Cases. Fig. 5 shows typical failure cases of the pro-
posed tracker on three different sequences of the proposed
LaGOT benchmark. Particularly challenging are videos that
contain multiple visually similar objects since our tracker

Annotations Predictions Predictions
#0001 #0307 #0429

#0001 #0185 #359

#0001 #0055 #0248

Figure 5. Visual examples of failure cases of the proposed tracker
(Ours-SwinBase) on different LaGOT sequences.
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Figure 7. Object size distribution of the LaGOT benchmark.

does not employ any motion model but rather tracks the ob-
jects via the learned appearance from the first frame. An-
other failure case occurs when the target object is no longer
visible such that our tracker might start to track a visually
similar distractor instead. However, once the target reap-
pears our globally operating tracker is usually able to re-
detect it. Lastly, if multiple visually similar objects need to
be tracked our tracker might fail to distinguish these objects
such that it produces multiple bounding boxes with different
ids for the same object.

5. Limitations and Future Work
Currently the number of objects that can be tracked is

limited by the pool-size of the object embeddings. While
it is possible to learn a larger pool-size it is cumbersome.
Thus, an interesting direction for future research would be
to generate an arbitrary number of object embedding on the
fly such that any number of target objects can be tracked.

Furthermore, we propose to use an FPN to regress more



Table 5. Comparison of LaGOT and the existing datasets. Statistics is provided for test or validation set for the datasets for which test set
annotations are hidden. * For MOT15-20 we report stats on the train set.

Num Num Avg Video length Avg Tracks Avg Track Length Avg Track Avg Instances Video Annotation
Dataset Classes Videos (num frames) per Video (num boxes) Length (s) per frame FPS FPS

YouTubeVOS [30] 91 474 135 1.74 27 4.5 1.64 30 FPS 6 FPS
Davis17 [25] - 30 67 1.97 67 2.8 1.97 24 FPS 24 FPS

ImageNetVID* [9] 30 555 317 2.35 208 7 1.58 30 FPS 30 FPS

TAO* [7] 302 988 1010 5.55 21 21 3.31 30 FPS 1 FPS
BDD100k [32] 11 200 198 94.21 26 5 11.8 30 FPS 5 FPS
MOT15 [8]* 1 11 500 45.5 75 3 8 2.5-30 FPS 2.5-30 FPS
MOT16 [8]* 1 7 760 74 273 10 38 14-30 FPS 14-30 FPS
MOT20 [8]* 1 4 2233 583 572 23 150 25 FPS 25 FPS
DogThruGlasses [16] 1 30 419 3.3 352.6 11.7 2.4 30 FPS 30 FPS

GMOT-40 [1] 10 40 240 50.65 133 5.3 26.6 24-30 FPS 24-30 FPS

TrackingNet [23] 27 511 442 1 442 15 1 30 FPS 30 FPS
UAV123 [22] 8 123 915 1 915 28 1 30 FPS 30 FPS
OTB-100 [29] 16 100 590 1 590 20 1 30 FPS 30 FPS
NFS-30 [12] 15 100 479 1 479 14 1 30 FPS 30 FPS
GOT10k [15] 84 420 150 1 150 15 1 10 FPS 10 FPS
OxUvA [28] 8 200 4198 1 60 140 1 30 FPS 1 FPS
LaSOT [10] 71 280 2430 1 2430 81 1 30 FPS 30 FPS

LaGOT 102 294 2258 2.89 707 71 2.41 30 FPS 10 FPS

accurate bounding boxes for small objects and show that
adding such an FPN helps. However, as in object detection,
tracking extremely small objects is challenging due to the
limited feature resolution when processing the full frame.

6. Datasets

Below we provide additional details about our annotated
dataset, such as examples of new classes and various statis-
tics, as well as an extensive comparison to existing datasets
that focus on related tasks.

6.1. Insights

Fig. 6 shows the distribution of the track lengths in sec-
onds for all tracks in the proposed benchmark LaGOT. We
observe that most tracks are between 30 and 110 seconds
long. Furthermore, Fig. 7 shows the size distribution of the
annotated objects in the dataset. We conclude that various
sizes are present in the dataset but large objects are rare than
small ones. Further, the distribution shows that the targets
are not visible in a large amount of video frames indicated
by an object area of zero.

During the annotation process, we added 31 new classes:
rotor, fish, backpack, motor, wheel, garbage, drum, accor-
dion, super-mario, hockey puck, hockey stick, kite-tail, ball,
crown, stick, spiderweb, head, banner,face, bench, tissue-
bag, para glider, star-patch, shadow, bucket, helicopter,
sonic, hero, ninja-turtle, reflection, rider.

6.2. Comparison

We provide a detailed comparison of related existing
datasets in Tab. 5. We divide the table into Video Ob-
ject Segmentation (VOS), Video Object Detection, Multiple
Object Tracking (MOT), Generic Multiple Object Track-
ing (GMOT) and Single Object Tracking (SOT) datasets.

The length of VOS sequences is much shorter than in our
LaGOT benchmark (2.8s/4.5s vs 71s). Similarly the video
object detection dataset ImagenetVID contains shorter se-
quences (7s vs. 71s), fewer classes (30 vs 102) and a smaller
number of average tracks per sequence (2.35 vs 2.89) than
LaGOT. MOT datasets typically focus on fewer classes,
contain shorter sequences or are annotated at low frame
rates only. TAO contains many more classes than typical
MOT datasets but provides annotations only at 1 FPS lead-
ing to a much lower average number of annotated frames
per track than LaGOT (21 vs. 707). The GMOT-40 dataset
contains fewer classes, fewer videos, shorter sequences and
provides due to its task only annotations of one particular
object class per sequence compared to LaGOT. In contrast
to SOT datasets that provide only a single annotated object
per sequence, LaGOT provides on average 2.89 tracks per
sequence. Furthermore, it contains longer sequences than
most listed SOT datasets. Overall LaGOT enables to prop-
erly evaluate the robustness and accuracy of multiple ob-
ject GOT methods. A key factor are the multiple annotated
tracks per sequence at a high frame rate and the relatively
long sequences.
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