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1. Experiment Parameters
1.1. Dataset

This paper encompasses a range of experiments conducted using the MNIST and CelebA datasets. To ensure uniformity
and facilitate comparisons, all images from the MNIST dataset were resized to dimensions of 32 × 32 pixels. Likewise, with
the CelebA dataset, images were initially center-cropped to 148 × 148 pixels and subsequently resized to 64 × 64 pixels.

1.2. Model Architecture

The encoder and decoder architectures for each experiment are detailed below. The notation Convn and ConvTn signify
a convolutional and transposed-convolutional layer with an output channel dimension of n respectively. All convolutional
layers employ a 4× 4 kernel size with a stride of 2 and padding of 1. FCn denotes a fully connected network with an output
dimension of n.

Table 1. Architecture of encoder and decoder for MNIST and CelebA dataset.

Datasets MNIST CelebA

Encoder

x ∈ R32×32×1

→ Conv32 → ReLU
→ Conv64 → ReLU
→ Conv128 → ReLU
→ Conv256 → ReLU

Flatten 1024
→ FC128 → z ∈ R128

x ∈ R64×64×3

→ Conv128 → ReLU
→ Conv256 → ReLU
→ Conv512 → ReLU
→ Conv1024 → ReLU

Flatten 16,384
→ FC256 → z ∈ R256

Decoder

z ∈ R128

FC8096

Reshape to 8× 8× 128
→ ConvT64 → ReLU
→ ConvT32 → ReLU
→ ConvT3 → Tanh

x̂ ∈ R32×32×1

z ∈ R512

FC65536

Reshape to 8× 8× 1024
→ ConvT512 → ReLU
→ ConvT256 → ReLU
→ ConvT128 → ReLU
→ ConvT3 → Tanh

x̂ ∈ R64×64×3

*denotes equal contribution
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1.3. Hyperparameter Settings

Our model underwent training based on the hyperparameter settings provided below.

Table 2. The hyperparameters for each experiment are elaborated in the following table. The determination of the number of epochs was
guided by the aim of attaining a stage of converged reconstruction error.

Dataset MNIST CelebA
Batch Size 32 32

Epochs 50 100
Training Examples 60,000 16,2079

Test Examples 10,000 20,000
Dimension of Latent Space 128 128

Learning Rate 10−3 10−3

λ 10−3 10−5

2. Theoretical Analysis
In this section, we provide a detailed proof for each of the theorems introduced in our paper. Before delving into the proof

explanations, we’ll establish an understanding of the symbols and terms that will be employed throughout the proofs.

2.1. Notations

1. For our proposed model:

• We denote the combined parameter of encoder (E), decoder (D) and the matrix between encoder and decoder
(M) by w. Hence, from now onwards, w is the parameter set of our model.

• wt denotes the parameter of our model at tth iteration.

• w∗ denotes the parameter of our model after convergence.

• We denote the loss function of our model as:

L(w) = L(E,D,M) = ∥D − (M(E(x))∥22︸ ︷︷ ︸
Lmse(w) = Lmse(E, D, M)

+∥M∥∗ (1)

or, in short hand L(w) = Lmse(w) + ∥M∥∗.

2. For ADAM Optimizer:

• The ADAM update for our model can be written as:

wt+1 = wt − α(V
1/2
t + diag(ϵI))−1mt (2)

where , mt = β1mt−1 + (1 − β1)∇L(wt), vt = β2vt−1 + (1 − β2)(∇L(wt))
2, Vt = diag(vt) is a diagonal

matrix, β1, β2 ∈ (0, 1) and ϵ > 0.

• α > 0, is the constant step size.

• One can clearly see from the equation vt = β2vt−1 + (1 − β2)(∇L(wt))
2 that vt will be always non-negative.

Also, the term ϵ in diag(ϵI) will always keep the matrix (diagonal matrix) (V 1/2
t + diag(ϵI))−1 positive definite

(PD).

• From now onward, to avoid using too much terms in derivation, we will denote the matrix (V
1/2
t + diag(ϵI))−1

as At.

• Hence, the ADAM update in Eq.(2) will now look like this.

wt+1 = wt − αAtmt (3)

• We will denote the gradient of the loss function as ∇L(w) for simplicity in rest of our proof.

2



2.2. Proofs

Theorem 1. Let the loss function L(E,D,M) be K−Lipchitz and let γ <∞ be an upper bound on the norm of the gradient
of L. Then the following holds for the deterministic version (when batch size = total dataset) of Algorithm (1):

For any σ > 0 if we let α =
√

2(L(E0,D0,M0)− L(E∗,D∗,M∗))/Kδ2T , then there exists a natural number T (σ, δ)
(depends on σ and δ) such that ∥L(Et,Dt,Mt)∥2 ≤ σ for some t ≥ T (σ, δ), where δ2 = γ2

ϵ2 .

Proof. We aim to prove Theorem (1) with contradiction. Let ∥∇L(wt)∥2 > σ > 0 for all t ∈ {1, 2, . . . }. Using Lipchitz
continuity, we can write:

L(wt+1)− L(wt) ≤ ∇L(wt)
T (wt+1 − wt) +

K

2
∥wt+1 − wt∥22

≤− α∇L(wt)
T (Atmt) +

K

2
α2∥Atmt∥22 (4)

One can clearly see that At is positive definite (PD). From here, we will find an upper bound and lower bound on the last and
first terms of RHS of Eq.(4), respectively.

Consider the term ∥Atmt∥2. We have λmax(At) ≤ 1

ϵ+ min
1≤i≤|vt|

√
(vt)i

. Further we note that recursion of vt can be solved as

vt = (1− β2)
∑t

j=1 β
t−j
2 (∇L(wj))

2. Now we define ρt = min
1≤j≤t,1≤k≤|vt|

(∇L(wj)
2)k. This gives us the following:

λmax(At) ≤
1

ϵ+
√
(1− βt

2)ρt
(5)

The equation of mt without recursion is mt = (1 − β1)
∑t

j=1 β
t−j
1 ∇L(wj). Let us define γt = max

1≤j≤t
∥∇L(wj)∥ then by

using triangle inequality, we have ∥mt∥2 ≤ (1− βt
1)γt. We can rewrite ∥Atmt∥2 as:

∥Atmt∥2 ≤ (1− βt
1)γt

ϵ+
√
ρt(1− βt

2)
≤ (1− βt

1)γt
ϵ

≤ γt
ϵ

(6)

Taking γt−1 = γt = γ and plugging Eq.(6) in Eq.(4):

L(wt+1)− L(wt) ≤ −α∇L(wt)
T (Atmt) +

K

2
α2 γ

2

ϵ2
(7)

Now, we will investigate the term ∇L(wt)
T (Atmt) separately, i.e. we will find a lower bound on this term. To analyze this,

we define the following sequence of functions:

Pj − β1Pj−1 = ∇L(wt)
T At(mj − β1mj−1)

= (1− β1)∇L(wt)
T (At∇L(wj))

At j = t, we have:

Pt − β1Pt−1 ≥ (1− β1)∥∇L(wt)∥22λmin(At)

Let us (again) define γt−1 = max
1≤j≤t−1

∥∇L(wj)∥2, and ∀j ∈ {1, 2, . . . t− 1}:

Pj − β1Pj−1 ≥ − (1− β1)∥∇L(wt)∥2γt−1λmax(At)

Now, we note the following identity:

Pt − βt
1P0 =

t−1∑
j=1

βj
1(Pt−j − β1Pt−j−1)
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Now, we use the lower bounds proven on Pj −β1Pj−1 ∀j ∈ {1, 2, . . . t− 1} and Pt−β1Pt−1 to lower bound the above sum
as:

Pt − βt
1P0 ≥ (1− β1)∥∇L(wt)∥22λmin(At)− (1− β1)∥∇L(wt)∥2γt−1λmax(At)

t−1∑
j=0

βj
1

≥ (1− β1)∥∇L(wt)∥22λmin(At)− (β1 − βt
1)∥∇L(wt)∥2γt−1λmax(At)

≥ ∥∇L(wt)∥22
(
(1− β1)λmin(At)−

(β1 − βt
1)γt−1λmax(At)

∥∇L(wt)∥2

)
≥ ∥∇L(wt)∥22

(
(1− β1)λmin(At)−

(β1 − βt
1)γt−1λmax(At)

σ

)
(From Contradiction) (8)

The inequality in Eq.(8) will be maintained as the term
(
(1− β1)λmin(At)− (β1−βt

1)γt−1λmax(At)
σ

)
is lower bounded by

some positive constant c. We will show this later in Extension 1.
Hence, we let

(
(1− β1)λmin(At)− (β1−βt

1)γt−1λmax(At)
σ

)
≥ c > 0 and put P0 = 0 (from definition and initial condi-

tions) in the above equation and get:

Pt = ∇L(wt)
T (Atmt) ≥ c∥∇L(wt)∥22 (9)

Now we are done with computing the bounds on the terms in Eq.(4). Hence, we combine Eq.(9) with Eq.(7) to get:

L(wt+1)− L(wt) ≤ − αc∥∇L(wt)∥22 +
K

2
α2 γ

2

ϵ2

Let δ2 = γ2

ϵ2 for simplicity. We have:

L(wt+1)− L(wt) ≤ − αc∥∇L(wt)∥22 +
K

2
α2δ2

αc∥∇L(wt)∥22 ≤ L(wt)− L(wt+1) +
K

2
α2δ2

∥∇L(wt)∥22 ≤ L(wt)− L(wt+1)

αc
+
Kαδ2

2c
(10)

From Eq.(10), we have the following inequalities:

∥∇L(w0)∥22 ≤ L(w0)− L(w1)

αc
+
Kαδ2

2c

∥∇L(w1)∥22 ≤ L(w1)− L(W2)

αc
+
Kαδ2

2c
...

∥∇L(wT−1)∥22 ≤ L(wT−1)− L(wt)

αc
+
Kαδ2

2c

Summing up all the inequalities presented above, we obtain:

T−1∑
t=0

∥∇L(wt)∥22 ≤ L(w0)− L(wt)

αc
+
Kαδ2T

2c

The inequality remains valid if we substitute ∥∇L(wt)∥22 with min
0≤t≤T−1

∥∇L(wt)∥22 within the summation on the left-hand
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side (LHS).

min
0≤t≤T−1

∥∇L(wt)∥22T ≤ L(w0)− L(w∗)

αc
+
Kαδ2T

2c

min
0≤t≤T−1

∥∇L(wt)∥22 ≤ L(w0)− L(w∗)

αcT
+
Kαδ2

2c

min
0≤t≤T−1

∥∇L(wt)∥22 ≤ 1√
T

(
L(w0)− L(w∗)

cb
+
Kδ2b

2c

)
where b = α

√
T . We set b =

√
2(L(w0)− L(w∗)δ2)/Kδ2, and we have:

min
0≤t≤T−1

∥∇L(wt)∥2 ≤
(
2Kδ2

T
(L(w0)− L(w∗))

) 1
4

When T ≥
(

2Kδ2

σ4 (L(w0)− L(w∗))
)
= T (σ, δ), we will have min

0≤t≤T−1
∥∇L(wt)∥2 ≤ σ which will contradict the assump-

tion, i.e. (∥∇L(wt)∥2 > σ for all t ∈ {1, 2, . . . }). Hence, completing the proof.
From the above analysis, one can clearly see that the convergence rate is O(1/T 1/4)

Theorem 2. Given any set of i.i.d x, x1, x2, . . . , xN ∈ Rl, we denote dE∗M∗

max = max
1≤j≤N

dE∗M∗
(x, xj) and

dE∗M∗

min = min
1≤j≤N

dE∗M∗
(x, xj), then we always have the conditional probability:

P
(
dE∗M∗

max − dE∗M∗

min

dE∗M∗
min

≥ Θ(D, λ)
∣∣∣∣λ > 0

)
= 1 (11)

where dE∗M∗
(x, xj) =

∥M∗(E∗(x))−M∗(E∗(xi))∥2

rank(M∗) , D denotes the training dataset and Θ(D, λ) depends on the training set and
regularization penalty parameter λ.

Proof. As w∗ is learned from Algorithm (1), we always have:

L(w∗) ≤ L(w0)

where, L(w0) is loss of our model at 0th epoch. Hence,

Lmse(w∗) + λ∥M∗∥∗ ≤ Lmse(w0) + λ∥M0∥∗
λ∥M∗∥∗ ≤ Lmse(w0)− Lmse(w∗) + λ∥M0∥∗

∥M∗∥∗ ≤ 1

λ
(Lmse(w0)− Lmse(w∗)) + ∥M0∥∗

∥M∗∥∗ ≤ 1

λ
(c1 − c2) + c3 (12)

where, c1 = Lmse(w0), c2 = Lmse(w∗), and c3 = ∥M0∥∗. Now, from Eq.(12) we can estimate an upperbound on the rank
of matrix M∗:

rank(M∗) ≤ c

(
1

λ
(c1 − c2) + c3

)
(where c ∈ R+) (13)
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Using the definition of dE∗M∗

max and dE∗M∗

min , we have:

dE∗M∗

max − dE∗M∗

min

dE∗M∗
min

=

max
i∈[n]

∥M∗(E∗(x))−M∗(E∗(xi))∥2

rank(M∗) −min
i∈[n]

∥M∗(E∗(x))−M∗(E∗(xi))∥2

rank(M∗)

min
i∈[n]

∥M∗(E∗(x))−M∗(E∗(xi))∥2

rank(M∗)

=

max
i∈[n]

∥M∗(E∗(x))−M∗(E∗(xi))∥2

rank(M∗)

min
i∈[n]

∥M∗(E∗(x))−M∗(E∗(xi))∥2

rank(M∗)

− 1

≥
max
i∈[n]

∥M∗(E∗(x))−M∗(E∗(xi))∥2

c( 1
λ (c1−c2)+c3)

min
i∈[n]

∥M∗(E∗(x))−M∗(E∗(xi))∥2

rank(M∗)

− 1 (Using Eq.(15))

≥ L(D)

c
(
1
λ (c1 − c2) + c3

)
here, L(D) =

max
i∈[n]

∥M∗(E∗(x))− M∗(E∗(xi))∥2

min
i∈[n]

∥M∗(E∗(x))−M∗(E∗(xi))∥2

rank(M∗)


≥ λL(D)

c(c1 − c2) + λcc3

≥ λL(D)

cc1
= Θ(λ,D) > 0 when λ > 0

hence, completing the proof.

Proposition 1. The rank of the latent space follows O(1/λ).

Proof. Let E∗ denote the trained encoder of our model and let x ∈ Rm×n×c be an image with dimensionm×n and c number
of channels. Let y = E∗(x), then we can define the latent space of our model (LoRAE) as:

z = M∗y = M∗(E∗(x)) (14)

We define the rank of the latent space as the number of non-zero singular values of the covariance matrix of latent space, i.e
ED[zz

T ]. We can write:

ED[zz
T ] = ED[M∗yyT M∗T ] (15)

Eq.(13) from Theorem 2 states that:

rank(M∗) ≤ c

λ
(c1 − c2) + cc3 (where c ∈ R+)

As M∗ is deterministic in Eq.(15), the covariance matrix can be re-written as M∗ED
[
yyT

]
M∗T . An upper bound on the

rank of M∗ED
[
xxT

]
M∗T is the upper bound on the rank of M∗. Thus, from Eq.(13) of Theorem 2, this analysis gives an

upper bound on the rank of latent space as O(1/λ).
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Extention 1. The term
(
(1− β1)λmin(At)− (β1−βt

1)γt−1λmax(At)
σ

)
from Eq.(8) is always non-negetive.

Proof. We can construct a lower bound on λmin(At) and an upper bound on λmin(At) as follows:

λmin(At) ≥ 1

ϵ+
√

max
1≤j≤|vt|

(vt)j
(16)

λmax(At) ≤ 1

ϵ+
√

min
1≤j≤|vt|

(vt)j
(17)

We remember that vt can be rewritten as vt = β2vt−1 + (1 − β2)(∇L(wt))
2, solving this recursion and defining ρt =

min
1≤j≤t,1≤k≤|vt|

(∇L(wj)
2)k and taking γt−1 = γt = γ we have:

λmin(At) ≥ 1

ϵ+
√
(1− βt

2)γ
2

λmax(At) ≤ 1

ϵ+
√
(1− βt

2)ρt

Where, γt−1 = max
1≤j≤t−1

∥∇L(wj)∥2, and ∀j ∈ {1, 2, . . . t− 1}. Setting ρt = 0, we can rewrite the term(
(1− β1)λmin(At)− (β1−βt

1)γt−1λmax(At)
σ

)
as:

(
(1− β1)λmin(At)−

(β1 − βt
1)γt−1λmax(At)

σ

)
≥

(
(1− β1)

ϵ+ γ
√
(1− βt

2)
− (β1 − βt

1)γ

ϵσ

)
(18)

≥
ϵσ(1− β1)− γ(β1 − βt

1)(ϵ+ γ
√
(1− βt

2))

ϵσ(ϵ+ γ
√
(1− βt

2))

≥ γ(β1 − βt
1)
ϵ
(

σ(1−β1)
γ(β1−βt

1)
− 1
)
− γ
√
(1− βt

2)

ϵσ(ϵ+ γ
√
(1− βt

2))

≥ γ(β1 − βt
1)

(
σ(1− β1)

γ(β1 − βt
1)

− 1

) ϵ−

(
γ
√

(1−βt
2)

(1−β1σ)

(β1−βt
1)γ

−1

)
ϵσ(ϵ+ γ

√
(1− βt

2))

By definition β1 ∈ (0, 1) and hence (β1 − βt
1) ∈ (0, β1). This implies that (1−β1)σ

(β1−βt
1)γ

> (1−β1)σ
β1γ

> 1 where the last
inequality follows due to the choice of σ as stated in the beginning of this theorem. This allows us to define a constant
(1−β1)σ

β1γ
− 1 := ψ1 > 0 such that (1−β1)σ

(β1−βt
1)γ

− 1 > ψ1. Similarly, our definition of delta allows us to define another constant
ψ2 > 0 to get:  γ

√
(1− βt

2)
(1−β1σ)
(β1−βt

1)γ
− 1

 <
γ

ψ1
= ϵ− ψ2 (19)

Putting Eq.(19) in Eq.(18), we get:(
(1− β1)λmin(At)−

(β1 − βt
1)γt−1λmax(At)

σ

)
≥
(
γ(β1 − β2

1)ψ1ψ2

ϵσ(ϵ+ σ)

)
= c > 0
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