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{hermes.mc-griff,renato.martins,cedric.demonceaux}@u-bourgogne.fr, nicolas.andreff@univ-fcomte.fr

In this supplementary material to our paper, we provide additional visualizations of the sequences from our dataset with
rolling shutter light-field images, as well as more details about the projection model presented in the paper.

1. Rolling Shutter Light-Field Dataset
Visualizations of some sequences scenes from our dataset (discussed in Section 4) are shown in Fig. 1. For each scene, we

provide eleven velocity scenarios from which every middle-exposition time position is similar, i.e. the center line of pixel is
the same for every image of the same scene. All the scenes share the same eleven velocity profiles, but still possess different
deformations due to the RS effect since the center of rotation of the camera is always different. Please notice the far right
column in Fig. 1 where the same movement creates some “squishing” in some sequences (e.g. second and fourth rows) and
some “stretching” in others (e.g. third and fifth rows). The velocities for each scenarios are presented in Tab. 1.

Scenario number 1 2 3 4 5

Rotations (euler angles) [0,0,π/12] [0,0,0] [-π/18, 0, 0] [π/18, π/18, 0] [0,0,π/12]
Translations [0,0,0] [0,-0.2,0] [0,-0.05,0.05] [0,0,0.2] [0,-0.2,0]

Scenario number 6 7 8 9 10

Rotations (euler angles) [0,0,π/3] [0,0,0] [-π/3, 0, 0] [2π/9, 0, 0] [0,0,π/2]
Translations [0,0,0] [0,-0.8,0] [0,0.4,0.2] [0.4,-1.6,-0.8] [0,-0.8,0]

Table 1. Different velocity scenarios, given in radians per frames and meters per frames. The scenarios from 1 to 5 are the slow scenarios
and the ones from 6 to 10 are the fast scenarios.

All sequences were created using Blender and the render engine Cycles. The cameras have a 50mm focal length, and
they are placed in a plane normal to the z axis organized in a 9 × 9 grid with 6mm between each view point. They are all
oriented in a way that they have their optical axes passing through the point [0, 0, 7m]. We also provide 1024x1024 depth
maps generated from the camera placed at the same position that of the center view, but with a 25mm focal length. Since
the scene is moving with respect to the camera, it is necessary to have a wider field of view as more of the scene can be seen
in the RS scenarios. The depth maps are normalized for a range from 0m to 7m. Some vizualisations of the depth maps are
shown in the second column of Fig. 1. The detailed results mentioned in the main paper for all sequences and scenes are
presented Tab. 2.

2. Projection Model Formulation
We provide additional details of the construction of the formulation for the RSLF projection model presented in Section

3, until Eq. (5), of the main paper. In order to describe the projection of a point in the world coordinate frame, we first
apply a thin lens projection through the main lens and then a pinhole projection through every micro-lens of the micro-
lens array (MLA) independently (as shown in Fig. 2). Given a point in the world homogeneous coordinate frame wp̃ =

1



Figure 1. This figure is already presented in the main paper and is duplicated here with bigger dimensions - Visualizations of the center
views from each of the seven different scenes. The four bottom rows are generated from samples of the Habitat-Matterport benchmark
[3]. The first column shows the GS scenario; the second column shows the associated depth maps, and the subsequent columns are from
different motion scenarios (numbers 1, 2, 9 and 10 in Tab. 1).



abs rel ↓ δ < 1.25 ↑
rabbit 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Jeon-CVPR [2] 0.06 0.08 0.07 0.07 0.07 0.1 0.19 0.12 0.13 0.34 0.39 1.0 1.0 1.0 1.0 1.0 1.0 0.82 1.0 0.91 0.59 0.35
OACC-Net [4] 0.4 0.48 0.5 0.44 0.38 0.49 0.47 0.48 0.44 0.5 0.5 0.26 0.08 0.06 0.14 0.29 0.09 0.1 0.1 0.1 0.13 0.1
Ours 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.02 0.03 0.03 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

table 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Jeon-CVPR [2] 0.03 0.03 0.04 0.03 0.05 0.03 0.05 0.09 0.05 0.17 0.07 1.0 1.0 0.99 1.0 1.0 1.0 0.97 0.96 0.99 0.76 0.94
OACC-Net [4] 0.17 0.21 0.2 0.19 0.19 0.2 0.19 0.24 0.15 0.25 0.2 0.69 0.6 0.64 0.64 0.63 0.59 0.67 0.55 0.79 0.5 0.65
Ours 0.02 0.02 0.02 0.03 0.02 0.03 0.04 0.02 0.04 0.03 0.04 0.995 0.995 0.99 1.0 0.99 1.0 1.0 0.99 0.99 0.98 1.0

bedroom 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Jeon-CVPR [2] 0.02 0.03 0.02 0.04 0.06 0.03 0.07 0.02 0.11 0.03 0.07 1.0 1.0 1.0 1.0 0.97 1.0 0.99 1.0 0.89 1.0 0.94
OACC-Net [4] 0.03 0.05 0.03 0.06 0.1 0.05 0.13 0.03 0.13 0.05 0.13 1.0 0.98 1.0 0.99 0.93 0.98 0.8 1.0 0.77 1.0 0.79
Ours 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.04 0.05 1.0 1.0 1.0 0.999 1.0 1.0 1.0 1.0 1.0 1.0 0.99

couch 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Jeon-CVPR [2] 0.02 0.03 0.03 0.03 0.03 0.02 0.06 0.05 0.06 0.05 0.06 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.98 1.0
OACC-Net [4] 0.04 0.06 0.06 0.05 0.06 0.05 0.07 0.09 0.06 0.12 0.06 1.0 0.99 0.99 1.0 0.98 0.99 0.99 0.92 1.0 0.84 0.98
Ours 0.03 0.04 0.03 0.03 0.03 0.04 0.06 0.03 0.11 0.04 0.06 1.0 0.999 1.0 0.999 0.989 0.999 0.989 0.992 0.964 0.958 0.971

fireplace 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Jeon-CVPR [2] 0.05 0.08 0.08 0.09 0.1 0.09 0.09 0.1 0.32 0.09 0.14 0.96 0.9 0.87 0.9 0.86 0.84 0.85 0.89 0.57 0.86 0.71
OACC-Net [4] 0.08 0.13 0.14 0.11 0.13 0.15 0.14 0.16 0.35 0.14 0.15 0.95 0.86 0.81 0.9 0.84 0.84 0.85 0.86 0.58 0.84 0.8
Ours 0.12 0.1 0.12 0.13 0.1 0.09 0.09 0.09 0.32 0.07 0.13 0.741 0.778 0.751 0.716 0.8 0.837 0.828 0.875 0.558 0.92 0.753

livingroom 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Jeon-CVPR [2] 0.04 0.04 0.05 0.04 0.05 0.05 0.06 0.07 0.07 0.1 0.1 0.99 1.0 0.99 0.99 0.96 0.99 0.99 0.95 0.99 0.92 0.94
OACC-Net [4] 0.04 0.04 0.05 0.04 0.08 0.05 0.07 0.08 0.06 0.12 0.09 1.0 1.0 0.99 0.99 0.96 0.99 0.99 0.95 1.0 0.87 0.96
Ours 0.05 0.05 0.04 0.04 0.07 0.05 0.08 0.06 0.12 0.08 0.07 0.974 0.98 0.983 0.974 0.93 0.975 0.92 0.946 0.928 0.915 0.878

Table 2. Detailed reconstruction error metrics for all the scenes considering the eleven different motion scenarios (from 0 to 10) of the
dataset. The upward arrow means that a higher score is better.
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Figure 2. This figure is already presented in the main paper and is duplicated here for the convenience of the reader - The adopted LF
coordinate frames: The 3D point is projected in a 3D virtual scene by thin lens projection, then on the 2D image plane by pinhole projection
which coordinate frame depends on the considered viewpoint.

(xw, yw, zw, 1)
⊤, its coordinates in the camera coordinate frame will be given by the matrix cMw

w as

cp̃ = cMw
wp̃, (1)

where p̃ represents the homogeneous coordinates of point p in the left-upperscripted reference frame, while cMw is the
homogeneous matrix displacing the camera frame onto the world frame:

cMw =

[
cRw

cTw

0⊤ 1

]
. (2)

We will then project it through the main lens as vp̃ = (xv, yv, zv, 1)
⊤, using the projection matrix for a thin lens projection



as

λc
vp̃ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 1

F 1


︸ ︷︷ ︸

=:Kc

cp̃, (3)

with F the focal distance of the main lens and λc a scaling factor. To express this point p̃ = (x, y, z, 1)⊤ in the sensor
coordinate frame, we use the homogeneous matrix D linked to the geometry of the sensor as

p̃ =


1 0 0 Ox

0 1 0 Oy

0 0 1 d
0 0 0 1


︸ ︷︷ ︸

=:D

vp̃, (4)

with O = (Ox, Oy, 0)
⊤ the intersection of the optical axis and the view plane and d the distance between the optical center

of the main lens and the view plane.
Given a point c = (s, t, 0)⊤ from the view plane, i.e. a projection center, the pinhole projection to an image point m̃s,t =
(xs,t, ys,t, 1)⊤ is given by the matrix

λs,t
s m̃s,t =

f 0 0 −fs
0 f 0 −ft
0 0 1 0


︸ ︷︷ ︸

=:Ks,t
s

p̃, (5)

with f the focal distance of the micro-lenses, i.e. the distance between the view plane and the image plane and λs a scaling
factor. This is a classical pinhole projection that take into account the position of the micro-lens c. From these equations we
can find the LF point (x, y, s, t) for any 3D point in the world, in the case of a LF camera modeled with the GS hypothesis.
In order to add the RS effect in our model, and thus the movement of the camera in our equations, we adopt a similar RS
formalism from Ait-Aider et al. [1]. They considered that the camera moves by the same little uniform movement between any
two lines of pixels and define camera pose in function of the pixel line. We also make the hypothesis that the acquisition time
inside a micro-image is instantaneous (i.e. micro-images are considered GS). Assuming a uniform movement [δRδt | δTδt]
between any two lines of micro-images, we can express the camera pose in function of the viewpoint line and rewrite Eq. (1)
as

cp̃ =

[
δRtcRw

cTw + δTt

0⊤ 1

]
wp̃, (6)

with
δRt = aa⊤(1− cos(Ωτt)) + I cos(Ωτt) + [a]∧ sin(Ωτt), and δTt = vτt, (7)

with a (axis of rotation) Ω (angular velocity) and v (linear velocity) describes the uniform movement of the camera coordinate
frame with respect to the world coordinate frame. τ is the time between the acquisition of two lines of point of view and t is
the line coordinate of the point of view c = (s, t, 0)⊤ from Eq. (5). The complete RSLF projection of the 3D point wp̃i to a
image point ms,t

i , given a center of projection c = (s, t, 0)⊤, is then

λms,t
i = Ks,t

s DKc[δR
tcRw | cTw + δTt]wp̃i. (8)

That can be simplified as
λms,t

i = Ks,t[δRtcRw | cTw + δTt]wp̃i, (9)

with

Ks,t =

f 0 − f
F (Ox − s) f(Ox − s)

0 f − f
F (Oy − t) f(Oy − t)

0 0 1− d
F d

 , (10)

which is presented in Eq. (5) of the main paper. As discussed in the main paper, this projection model combines at the same
time the property of a light-field sensor and a rolling shutter sensor. Specifically, the model can be extended to a GS light-
field camera, when the temporal delay between two consecutive lines is zero, τ = 0, and thus the position of the sensor with



respect to the scene will be identical for any t. In fact, Eq. (6) will be simplified into Eq. (1), that is the global shutter case
of the light-field projection described earlier. For similar reasons, the model will act like a global shutter light-field camera
when the camera has no velocity with respect to the object. The RSLF projection model generalizes to a conventional camera
projection in the case where the MLA is composed of a unique lens. Indeed if we set s = 0 and t = 0, Eq. (10) becomes

K0,0 =

f 0 − f
F Ox fOx

0 f − f
F Oy fOy

0 0 1− d
F d

 (11)

which correspond to a pinhole camera with projection matrix K′ at position D′, with

K′ =

f 0 cx
0 f cy
0 0 1

 , D′ =

1 0 0 Ox − cx
d
F

0 1 0 Oy − cy
d
F

0 0 fOx

Fcx
d

 , (12)

with cx = ( d
F − 1) f

F Ox and cy = ( d
F − 1) f

F Oy . Since we consider that the micro-images are locally global shutter, this
pinhole model is global shutter.

Implementation details. The non-linar bundle adjustment discussed in Section 3.1 of the main paper was implemented
using PyTorch with the Adam optimizer, with learning rate 0.01 for 5000 iterations to ensure convergence. For the regular-
ization of our optimization method discussed in the end of Section 3 of the main paper, we use a new coordinate frame in
order to provide a center of rotation to be optimized and a normalization for the point cloud. We define the new points npi

as:
npi =

pi − g

λn
, (13)

with g the center of rotation and λn the normalization factor. g is initialized as the mean position of the initial points pi and
λn is defined before the optimization and is calculated as

λn = max(pi − g). (14)
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