
A. Baseline adaptations for OOD detection in
the few-shot classification setting

As reported in Section 5.3, we adapt several existing
OOD detection methods for the few-shot classification set-
ting. In particular, the adaptations are carried out for the
hypernetwork model M learned for few-shot classification
(FSC). The OOD detection metrics (AUROC and FPR@90)
reported in Section 5.4 are calculated using the IND score,
which we denote as sM. For all baselines, we use the same
implementations for the feature extractor F and the hyper-
network H as described in Section 5.2.

Below we provide details on how sM is calculated for
each method.

1. MSP [25]: The MSP uses the largest value of the soft-
max as the IND score, i.e.,

sM(xq;Ds) = max
c2Cn

p(Y = c|xq) (11)

where p(Y = c|xq) = softmax (C (F (xq) |W )) [c],
and Cn corresponds to the set of labels in a few-shot
episode as described in Section 3.

2. Entropy [40]: We also consider using the Shannon en-
tropy that depicts the uncertainty with respect to the
probabilities predicted by the model. Specifically, we
compute

sM(xq;Ds) := �H(Y ) (12)

=
X

c2Cn

p(Y = c|xq) · log (p(Y = c|xq)) ,

(13)

where p(Y = c|xq) = softmax (C (F (xq) |W )) [c].

3. ODIN [38]: The ODIN detector uses temperature scal-
ing and small input perturbation to improve the MSP
baseline for OOD detection. In particular, ODIN intro-
duces hyperparameter S for temperature scaling and ✏

for the magnitude of input perturbation that are used to
adjust the IND confidence score:

sM(xq;Ds, T, ✏) = max
c2Cn

p(Ỹ = c|x̃q;T ) (14)

where x̃q is the perturbed input calculated as

x̃q = xq�✏·sign
✓
�rxq

log

✓
max
c2Cn

p(Y = c|xq;T )

◆◆
,

p(Y |xq;T ) is the softmax probability with tempera-
ture scaling, and p(Ỹ |x̃q;T ) denotes the temperature
scaled probability of the perturbed input. In our hyper-
network framework, we calculate p(Y = c|xq;T ) =
softmax (C (F (xq) |W )) [c].

4. DM [34]: The DM OOD detector uses the features ex-
tracted from each block of the encoder F . We denote
the feature extracted at each block as f(x, l). Given the
labels in the support set along with their correspond-
ing features, the parameters of the Gaussian distribu-
tion µl,c and ⌃l is fitted to each block for each class
c in the episode. The covariance is shared across all
the classes. The layer-specific score sl for query xq is
computed as:

sl(xq;Ds) := max
c2Cn

log (N (f (xq, l) ;µl,c,⌃l)) (15)

The final score can be computed using a linear combi-
nation of layer-specific scores, i.e. sM(xq;Ds) := ↵l ·

sl(xq;Ds), where the logistic regression model with
parameters ↵l are found using the validation dataset.
However, we found that learning the logistic regression
model overfits the support set containing few samples
and the OOD samples used in the validation set. In-
stead, we use sM(xq;Ds) := maxl sl(xq;Ds) to work
better and we use that in all our experiments. Note that
DM doesn’t use the adapted task-specific classifier to
detect OOD samples.

5. pNML [8]: Predictive Normalized Maximum Likeli-
hood (pNML) learner is a recently proposed OOD de-
tection approach that uses generalization error to detect
OOD samples. [8] derived a pNML regret for a single
layer NN that can be used for features extracted from a
pre-trained deep encoder, and can be used as the con-
fidence measure for detecting OOD samples. Namely,
the pNML regret of a single layer NN is

�(x;Ds) = log
CnX

i=1

pi

pi + pi
xT g(1� pi)

(16)

where pi is the output probability for the i
th class and

g is a function of the inverse of the data matrix of the
features of the IND data as defined in Equation 12
of [8]. We defined the IND score as sM(xq;Ds) :=
1 � �(x;Ds). In our hypernetwork-based framework
for few-shot classification, we use the output probabil-
ities from the adapted task-specific classifier to define
pi. The pNML parameter g is calculated using the fea-
tures in the support set of a given episode during meta-
testing. Due to the limited number of IND samples in
the support set, we found the pNML regret to have lim-
ited success in detecting OOD samples in the few-shot
setting.

6. OE [26]: The Outlier Exposure (OE) uses additional
OOE samples during meta-training stage to learn the
model. To use OE, we apply the following training



Table 4. The candidate values and the final determined values for
the hyperparameters of all the methods.

Method Candidates Determined

5-shot 5-way 10-shot 5-way

FS-CIFAR-100 [6]

ODIN [38] ✏ 2 {0.2, 0.02, 0.002} ✏ = 0.002 ✏ = 0.002
T 2 {0.1, 1.0, 10.0} T = 1.0 T = 10.0

OE [26] � 2 {0.1, 1.0, 10.0} � = 1.0 � = 1.0

ParamMix aPM 2 {0.1, 1.0, 2.0} aPM = 2.0 aPM = 2.0
bPM 2 {5.0, 10.0, 20.0} bPM = 5.0 bPM = 5.0

OOE-Mix aOM 2 {1.0, 10.0, 20.0} aOM = 20.0 aOM = 20.0
bOM 2 {1.0, 10.0, 20.0} bOM = 20.0 bOM = 20.0

MiniImageNet [54]

ODIN [38] ✏ 2 {0.2, 0.02, 0.002} ✏ = 0.002 ✏ = 0.002
T 2 {0.1, 1.0, 10.0} T = 1.0 T = 10.0

OE [26] � 2 {0.1, 1.0, 10.0} � = 1.0 � = 1.0

ParamMix aPM 2 {0.1, 1.0, 2.0} aPM = 0.1 aPM = 0.1
bPM 2 {5.0, 10.0, 20.0} bPM = 10.0 bPM = 10.0

OOE-Mix aOM 2 {1.0, 10.0, 20.0} aOM = 10.0 aOM = 10.0
bOM 2 {1.0, 10.0, 20.0} bOM = 10.0 bOM = 10.0

objective when meta-training the hypernetwork frame-
work:

LOE = E{x,y}⇠DIND
q

[LCCE (M (xq;Ds) , y)] +

� · E(x̃,ỹ)⇠DOOE
q

[LCCE (M (x̃q;Ds) , ỹ)]

(17)

where M(xq;Ds) are the output logits for query xq

in the episode containing the support set Ds, LCCE

computes the cross entropy loss, � is a hyperparameter
that weighs the loss for OOE samples in the episode,
and D

IND
q

and D
OOE
q

are the IND and OOE samples
in the queries of a given episode.

7. OEC [56]: Similar to OE, Out-of-Episode Classi-
fier (OEC) leverages OOE inputs at the meta-training
stage. However, unlike OE which uses uniform label
distribution for a multi-class objective, OEC learns a
binary classifier that distinguishes IND classes from
OOE classes. The binary classifier uses the following
objective during meta-training stage

LOEC = �

X

xq2DIND
q

log (� (s (xq;Ds)))�

X

x̃q2DOOE
q

log (1� � (s (x̃q;Ds)))
(18)

where sM(xq;Ds) = maxc2Cn
log p(Y = c|xq), and

D
IND
q

and D
OOE
q

are the IND and OOE samples in
the queries of a given episode. In the few-shot setting,
we use the prediction as ŷ = argmax

c2Cn
log p(Y =

c|xq) during meta-testing for calculating the accuracy.

Figure 5. Covariance matrix singular values distribution for many-
and few-shot. In the few-shot case, the empirical covariance ma-
trix is degenerate, which leads OOD methods like DM [34] to fail.

B. Hyperparameters
The hyperparameters used for the various baseline meth-

ods in our experiments are included in Table 4, showing
the settings tried and the value providing the best results.
For OOE-Mix and ParamMix, we use a random draw from
the Beta distribution to determine the mixup coefficient �
per sample, as is common practice for Mixup [64]. We use
MSP [25] for detecting OOD samples after meta-training,
using the proposed HyperMix approach. We find the best
hyperparameter settings to be fairly consistent across num-
ber of shots and the dataset.

C. Effects of few samples in OOD detection
Many out-of-distribution detection methods operate by

learning the statistics of the in-distribution samples in some
manner or another. In the typical OOD setting, it is com-
mon for there to be thousands of examples per class for a
model to learn a strong understanding of the in-distribution
classes. In contrast, in our FS-OOD, the model has very
limited examples in the support set, which may conflict with
assumptions made by some OOD methods. An example of
this is Deep Mahalanobis [34], which estimates the class-
conditional mean and covariance per class. With a few ex-
amples, it is difficult to get a good estimate on such statis-
tics. As shown in Figure 5, the data matrix for few exam-
ples is degenerate in few-shot cases, leading to especially
bad performance (Table 1).


