
A. Experiment Details
In each experiment, the MSDNet backbone models are

trained on the training data to minimise the L2 regularised
sum of cross-entropy losses computed for all exits of the
model. The L2 regularisation is implicit through weight
decay in the SGD optimizer, and the loss for a single in-
put sample is Li =

∑nblock
k=1 − ln pk(ŷi = yi |xi), where

pk(ŷi = yi |xi) is the predicted softmax confidence on the
correct label yi at classifier k. Moreover, validation data
is used after every epoch to assess the performance of the
model. Subsequently, we select the model that achieved
the highest Top-1 accuracy on the validation set at the last
classifier as the final model.

After training, we evaluate each model using the test
set on a budgeted batch classification setup. For this, the
computational budget is fixed, and each model must aim
to classify the test set samples within the given budget. To
achieve this, we use the validation set to calculate thresholds
tk, k = 1, 2, . . . , nblock, one for each exit, such that the over-
all cost of classifying all test samples does not exceed the
predefined budget B in expectation. To utilise the thresh-
olds tk, we need to employ a metric of uncertainty assigned
to each prediction. If the uncertainty does not exceed the
pre-calculated threshold at stage k we exit the model at the
current stage and otherwise pass the test sample to the next
block and continue with the computation. In our experi-
ments, this uncertainty metric is the prediction confidence:
the maximum softmax output value for each sample in the
case of a vanilla MSDNet. For our model leveraging Laplace
approximations we compute the maximum of the predictive
posterior probabilities. As increasing prediction confidence
corresponds to decreasing uncertainty, a sample is exited
at exit k if the predicted confidence exceeds the confidence
threshold tk that has been calculated on the validation set.

A grid search is used to select values for the temperature
scaling hyperparameter Tk and Laplace approximation prior
variance σk. The values of Tk used in the grid search for
all models are the following: [0.3, 0.5, 0.7, 1.0, 1.3, 1.5,
1.7, 2.0, 2.5, 3.0]. The values of Laplace prior variance
σk used in the grid search are [0.5, 0.7, 1.0, 1.3, 1.5, 1.7,
2.0, 2.5, 3.0, 4.0]. If the temperature scale or Laplace prior
variance are not optimised for in a grid search, as in many
ablation study model options, they are set to their default
values of 1.0 and 2.0 respectively. When MIE is not used,
the grid search for Tk and σk is performed independently
for each exit k minimising the NLPD on the validation set.
When using MIE, Tk and σk are optimised one exit at a
time sequentially, starting from the first exit, minimizing
the ensemble prediction NLPD. When performing the grid
search for exit j, the already optimised values of Tk and
σk for exits k = 1 . . . j − 1 remain fixed, and the values
Tj and σj are optimised by selecting the pair of values that
minimises the MIE prediction NLPD for exit j.

To obtain the numbers in Tabs. 1, 2, 6 and 7, results for
each model over a range of budgets are averaged. The budget
range is different for ImageNet/Caltech-256 and CIFAR-100
models, and for each of the small, medium, and large size
models. The computational budget ranges for averaging
results for each model are listed in Tab. 3. All experiments
are implemented with PyTorch [38].

A.1. CIFAR-100 Model and Training Details

The CIFAR-100 training set of 50,000 images is split
into 45,000 training images and 5,000 validation images.
The test set has 10,000 images. On CIFAR-100, models
are trained for 300 epochs using a batch size of 64 images,
and the learning rate is initially set to 0.1 and is decayed
to one-tenth at epochs 150 and 225. The optimiser is SGD
with a momentum of 0.9 and weight decay of 10−4. The
MSDNet backbone of all CIFAR-100 models has three scales
of features. The number of channels after the first layer is
16, and the number of channels added by each layer is 6.

On CIFAR-100 the ‘small’, ‘medium’, and ‘large’ DNN
backbones have 4, 6, and 8 blocks and classifiers each, re-
spectively. The small architecture has a total of 10 layers,
and transition layers that reduce the number of scales by one
are performed at layers 5 and 9. The medium architecture
has a total of 21 layers, and transition layers are performed
at layers 8 and 15. The large architecture has a total of 36
layers, with transition layers performed at layers 13 and 25.
Tab. 4 shows more detailed information separately for each
block of the small, medium, and large models.

A.2. ImageNet Model and Training Details

The ImageNet training set of 1,281,167 images is split
into 1,231,167 training images and 50,000 validation images.
The test set is the standard test set of 50,000 images. In
preprocessing, the sample images that are of varying reso-
lutions are resized to a resolution of 224 by 224 pixels. On
ImageNet, models are trained for 90 epochs using a batch
size of 256, and the learning rate is initially set to 0.1 and it

Table 3. Ranges of computational budgets (FLOPs) over which
results are averaged for different models to obtain the results shown
in Tabs. 1, 2, 6 and 7.

CIFAR-100

Model size Lower budget
limit

Upper budget
limit

Small 7.0 · 106 2.6 · 107
Medium 2.5 · 107 0.6 · 108
Large 0.5 · 108 1.4 · 108

ImageNet and Caltech-256

Model size Lower budget
limit

Upper budget
limit

Small 3.5 · 108 1.1 · 109
Medium 7.5 · 108 2.2 · 109
Large 1.5 · 109 2.6 · 109



Table 4. Additional details on the different MSDNet backbone architectures used for different model sizes on CIFAR-100, ImageNet, and
Caltech-256. Each row in the table shows details of a specific block in the architecture. L is the number of layers, FLOPs is the computational
cost of processing one input sample, and nparams is the number of model parameters. FLOPs and nparams are cumulative numbers i.e. they
include the numbers from the previous blocks. This means that the cost for the entire architecture is the cost shown for the last block.
CIFAR-100 Small Medium Large

Block number L FLOPs (106) nparams(10
6) L FLOPs (106) nparams(10

6) L FLOPs (106) nparams(10
6)

1 1 6.86 0.30 1 6.86 0.30 1 6.86 0.30
2 2 14.35 0.65 2 14.35 0.65 2 14.35 0.65
3 3 26.13 1.02 3 27.29 1.11 3 27.29 1.11
4 4 38.04 1.42 4 46.56 1.61 4 48.45 1.73
5 - - - 5 67.43 2.11 5 81.57 2.39
6 - - - 6 89.09 2.85 6 112.64 3.18
7 - - - - - - 7 152.92 4.10
8 - - - - - - 8 192.69 5.31

ImageNet Small Medium Large

Block number L FLOPs (106) nparams(10
6) L FLOPs (106) nparams(10

6) L FLOPs (106) nparams(10
6)

1 4 339.90 4.24 6 514.66 7.08 7 615.6 8.76
2 4 685.46 8.77 6 1171.18 15.69 7 1436.39 20.15
3 4 1008.16 13.07 6 1844.52 24.01 7 2283.21 31.73
4 4 1254.47 16.75 6 2501.40 42.19 7 2967.42 41.86
5 4 1360.53 23.96 6 2742.06 56.53 7 3253.79 62.31

Caltech-256 Small Medium Large

Block number L FLOPs (106) nparams(10
6) L FLOPs (106) nparams(10

6) L FLOPs (106) nparams(10
6)

1 4 339.62 3.95 6 514.28 6.70 7 615.26 8.33
2 4 684.88 8.20 6 1170.40 14.90 7 1435.49 19.25
3 4 1007.32 12.24 6 1843.36 22.86 7 2281.85 30.37
4 4 1253.41 15.69 6 2499.59 40.38 7 2965.67 40.11
5 4 1359.05 22.48 6 2739.66 54.13 7 3251.32 59.84

is decayed to one-tenth at epochs 30 and 60. The optimiser
is SGD with a momentum of 0.9 and weight decay of 10−4.
The MSDNet backbone of all ImageNet models has four
scales of features and five blocks. The number of channels
after the first layer is 32, and the number of channels added
by each layer is 16.

The small, medium, and large models for ImageNet have
five blocks and five classifiers each, but vary in the number of
layers in each block (model architecture design follows [18]).
The small architecture has a total of 20 layers, and transition
layers that reduce the number of scales by one are performed
at layers 6, 11, and 16. The medium architecture has a total
of 30 layers, and transition layers are performed at layers 9,
17, and 25. The large architecture has a total of 35 layers,
with transition layers at layers 10, 19, and 28. Tab. 4 shows
more detailed information separately for each block of the
small, medium, and large models.

A.3. Caltech-256 Model and Training Details

The Caltech-256 data set of 30,607 images is split to a
training set of 23,107, a validation set of 2,500, and a test
set of 5,000 samples. In preprocessing, the sample images
that are of varying resolutions are resized to a resolution
of 224 by 224 pixels, the same as for ImageNet data. The
Caltech-256 data set has images from 257 categories.

On Caltech-256 the MSDNet backbone models are the
same as for ImageNet, with the difference of the output
dimensionality being 257 instead of 1,000, which affects

the number of parameters and FLOPs slightly. Caltech-256
models are trained for 180 epochs with a batch size of 128.
This difference in training compared to ImageNet models
is due to the smaller number of training samples and the
smaller number of classes. The learning rate is initially set to
0.1 and is decayed to one-tenth at epochs 90 and 135. Apart
from the mentioned differences, the Caltech-256 models are
trained the same as the ImageNet models.

A.4. Details on Baseline Models and Their Training

We use ResNet and DenseNet models as baseline archi-
tectures for CIFAR-100, ImageNet, and Caltech-256 ex-
periments. Tab. 5 shows the model architecture details for
all the used baseline models. Both ResNet and DenseNet
models are implemented using the implementations from
Torchvision [32]. All ResNet models are built using the ba-
sic residual layer with two consecutive 3 by 3 convolutions,
except for the ImageNet/Caltech-256 ResNet50, which uses
the bottleneck residual layer. For ImageNet and Caltech-256
DenseNet models, the growth rate is 32 and the number of
initial features is 64. For CIFAR-100 DenseNet models, the
growth rate is 12 and the number of initial features is 24.
For ImageNet and Caltech-256, the Torchvision implemen-
tations are used as they are. On Caltech-256 the baseline
models are the same as for ImageNet, with the difference
of the output dimensionality being 257, which affects the
number of parameters and FLOPs slightly.

For CIFAR-100, the architectures need some modifica-



Table 5. Details of the baseline ResNet and DenseNet models that
are shown for comparison in Fig. 7. FLOPs is the computational
cost of processing one input sample, and nparams is the number of
model parameters. LBi is the number of layers in block i of the
model (a block here refers to all layers between transition layers that
change the feature map size). For CIFAR-100 models i = 1 . . . 3
and for ImageNet models i = 1 . . . 4.

CIFAR-100 baseline models

Model name FLOPs nparams LB1 LB2 LB3

ResNet8 12.6 · 106 8.39 · 104 1 1 1
ResNet14 26.8 · 106 18.1 · 104 2 2 2
ResNet20 41.0 · 106 27.8 · 104 3 3 3
ResNet26 55.2 · 106 37.6 · 104 4 4 4
ResNet38 83.7 · 106 57.0 · 104 6 6 6
ResNet50 112 · 106 76.4 · 104 8 8 8
ResNet62 141 · 106 95.9 · 104 10 10 10
ResNet86 197 · 106 135 · 104 14 14 14
ResNet110 254 · 106 174 · 104 18 18 18
DenseNet10 10.0 · 106 2.34 · 104 1 1 1
DenseNet16 20.3 · 106 4.88 · 104 2 2 2
DenseNet22 31.7 · 106 7.80 · 104 3 3 3
DenseNet28 44.4 · 106 11.1 · 104 4 4 4
DenseNet40 73.4 · 106 18.8 · 104 6 6 6
DenseNet52 107 · 106 28.0 · 104 8 8 8
DenseNet64 146 · 106 38.8 · 104 10 10 10
DenseNet76 190 · 106 51.0 · 104 12 12 12
DenseNet88 239 · 106 64.8 · 104 14 14 14

ImageNet baseline models

Model name FLOPs nparams LB1 LB2 LB3 LB4

ResNet10 8.93 · 108 5.42 · 106 1 1 1 1
ResNet18 18.2 · 108 11.7 · 106 2 2 2 2
ResNet26 27.4 · 108 18.0 · 106 3 3 3 3
ResNet34 36.7 · 108 21.8 · 106 3 4 6 3
ResNet50 41.0 · 108 25.6 · 106 3 4 6 3
DenseNet57 9.24 · 108 2.44 · 106 2 6 10 8
DenseNet65 13.8 · 108 2.93 · 106 4 6 12 8
DenseNet81 16.5 · 108 4.18 · 106 4 8 16 10
DenseNet97 25.3 · 108 5.44 · 106 6 12 16 12
DenseNet121 28.5 · 108 7.98 · 106 6 12 24 16

Caltech-256 baseline models

Model name FLOPs nparams LB1 LB2 LB3 LB4

ResNet10 8.92 · 108 5.04 · 106 1 1 1 1
ResNet18 18.2 · 108 11.3 · 106 2 2 2 2
ResNet26 27.4 · 108 17.6 · 106 3 3 3 3
ResNet34 36.7 · 108 21.4 · 106 3 4 6 3
ResNet50 41.0 · 108 24.0 · 106 3 4 6 3
DenseNet57 9.24 · 108 2.08 · 106 2 6 10 8
DenseNet65 13.8 · 108 2.55 · 106 4 6 12 8
DenseNet81 16.5 · 108 3.69 · 106 4 8 16 10
DenseNet97 25.3 · 108 4.87 · 106 6 12 16 12
DenseNet121 28.5 · 108 7.22 · 106 6 12 24 16

tions due to the smaller input dimensionality. For CIFAR-
100 ResNets, the first convolutional layer is replaced by a
3 by 3 convolution with stride 1 and 16 output channels,
and the max pooling layers are removed. For CIFAR-100
DenseNets, the first convolutional layer is replaced by a 3 by
3 convolution with stride 1, and the first batch normalization,
max pooling, and ReLU operations are removed.

On CIFAR-100, ResNet and DenseNet models are trained
for 300 epochs, and the learning rate is initially set to 0.1 and
is decayed to one-tenth at epochs 150 and 225. On ImageNet,
the ResNet and DenseNet models are trained for 90 epochs,

and the learning rate is initially set to 0.1 and it is decayed to
one-tenth at epochs 30 and 60. On Caltech-256 the baseline
models are trained for 180 epochs with a batch size of 128.
The learning rate is initially set to 0.1 and is decayed to one-
tenth at epochs 90 and 135. For all data sets all ResNet and
DenseNet models use the SGD optimiser with a momentum
of 0.9 and weight decay of 10−4.

A.5. Details on the Used Performance Metrics

For reporting model performances, we use the Top-1
and Top-5 accuracies, the negative log-predictive density
(NLPD), and the expected calibration error (ECE). Top-1
accuracy is the standard accuracy metric, and is the percent-
age of test predictions for which the highest model predicted
probability was on the correct class. Top-5 accuracy is the
percentage of test predictions, for which the correct class
is among the five classes that the model assigned the high-
est probability. Negative log-predictive density (NLPD) is
defined as:

NLPD = −
∑ntest

i=1 log p(ŷi = yi |xi), (3)

where p(ŷi = yi |xi) is the model predicted probability on
the correct label yi. NLPD is a metric that captures both the
quality of uncertainty estimates as well as the correctness
of the predictions, most heavily penalizing overconfident
incorrect predictions.

Expected calibration error (ECE) is defined as:

ECE =
∑m

j=1 bj∥(pj − µj)∥, (4)

where bj is the fraction of test samples in bin j = 1, . . . ,m,
pj is the Top-1 accuracy of the jth bin, and µj is the average
confidence of the predictions in the bin. We use m = 10
in our experiments. ECE assesses the calibration of each
model, i.e., how consistent the confidence scores are with
the posterior probabilities.

B. Additional Results
Fig. 8 repeats the results from Fig. 5 and additionally

shows corresponding scatter plots for the vanilla MSDNet
for comparison. The bottom row in Fig. 8 shows predictive
uncertainty histograms for all samples in the CIFAR-100
test set, comparing the vanilla MSDNet model to our model.
The results are obtained using the small CIFAR-100 model.
Comparing the scatter plots of our model with those of the
vanilla model, we see that the vanilla model has more points
in the top left corner of the plots, representing overconfident
incorrect predictions. Looking at the bottom row histograms,
we observe that the predictions from the vanilla MSDNet are
overall more confident than those of our model.

Tab. 6 shows an extended version of the ablation study
seen in Tab. 1, adding model versions that use Laplace
approximation, but optimise only temperature scaling or
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Figure 8. The second row scatter plots show correctly classified and misclassified test points for our model on an uncertainty vs. error
axis (repeated from Fig. 8) and the third row shows the corresponding scatter plots for the vanilla MSDNet model. The uncertainty of the
points in the top half of each scatter plot is summarized as a histogram in the top row (repeated from Fig. 8). Our model result is shown
in the solid histograms, while the vanilla MSDNet results are shown as a histogram outline. Uncertainty histograms of all points in the
uncertainty–error scatter plots are shown in the bottom row, comparing our model (black histogram) to the vanilla MSDNet model (orange
outline). We can see that the vanilla MSDNet has overall much less uncertainty in its predictions

Laplace prior variance in a grid search, or optimise neither
using fixed default values. We also include an ablation result
where only temperature scaling is used on the vanilla model
predictions. Tab. 6 also shows results for optimising the
temperature scaling parameter when using MIE but without
Laplace approximation. Similarly for Caltech-256, Tab. 7
shows a more extensive version of Tab. 2.

Looking at the results in these tables, we notice that al-
though Laplace approximation alone often slightly decreases
top-1 accuracy, when used together with MIE it increases
top-1 accuracy above what MIE alone would achieve, sug-
gesting that these two methods are suitable to be used to-
gether. In Tab. 6 the result using only temperature scaling
for ImageNet has identical results with the vanilla model,



Table 6. Table of Top-1/Top-5 accuracy, negative log-predictive density (NLPD), and expected calibration error (ECE) for different models
on CIFAR-100 and ImageNet data. All numbers are averages over a range of computational budgets in the budgeted batch classification setup.
‘MIE Laplace Topt σopt’-model corresponds to ‘Our model’ that is referred to in other figures. Topt and σopt refer to grid search optimisation
of the temperature scale and Laplace prior variance, respectively. ntrain is the number of training samples, d is the input dimensionality,
c is the number of classes, and nbatch is the batch size. The red and green numbers show the decrease or increase in performance compared
to MSDNet (vanilla). The best performing model for each metric and each model size, on each dataset, is shown in bold.

CIFAR-100 IMAGENET
(ntrain, d, c, nbatch) (50000, 3072, 100, 64) (1281167, 150528, 1000, 256)

Top-1 ACC ↑ Top-5 ACC ↑ NLPD ↓ ECE ↓ Top-1 ACC ↑ Top-5 ACC ↑ NLPD ↓ ECE ↓

Sm
al

l

MSDNet (vanilla) 69.25 90.48 1.498 0.182 68.15 88.22 1.338 0.019
+ Topt 69.06 −0.19 90.62 +0.14 1.207 −0.291 0.079 −0.103 68.15 +0.00 88.22 +0.00 1.338 −0.000 0.019 −0.000

+ Laplace 69.21 −0.04 90.46 −0.02 1.419 −0.079 0.155 −0.027 68.14 −0.01 88.21 −0.01 1.335 −0.003 0.016 −0.003

+ Laplace Topt 69.02 −0.22 90.65 +0.17 1.196 −0.302 0.060 −0.121 68.13 −0.01 88.18 −0.04 1.337 −0.001 0.016 −0.004

+ Laplace σopt 69.21 −0.04 90.42 −0.06 1.415 −0.082 0.154 −0.028 68.13 −0.02 88.17 −0.05 1.337 −0.001 0.016 −0.003

+ Laplace Topt σopt 69.06 −0.19 90.58 +0.10 1.208 −0.289 0.073 −0.109 68.10 −0.05 88.18 −0.04 1.337 −0.001 0.015 −0.005

+ MIE 69.97 +0.72 90.88 +0.40 1.218 −0.280 0.080 −0.102 68.27 +0.12 88.13 −0.10 1.355 +0.017 0.055 +0.036

+ MIE Topt 69.74 +0.50 91.11 +0.63 1.133 −0.365 0.028 −0.154 68.25 +0.10 88.04 −0.18 1.353 +0.015 0.038 +0.019

+ MIE Laplace 69.99 +0.74 90.88 +0.40 1.189 −0.308 0.056 −0.125 68.26 +0.11 88.11 −0.11 1.361 +0.023 0.070 +0.051

+ MIE Laplace Topt 69.83 +0.58 91.10 +0.62 1.135 −0.363 0.021 −0.161 68.22 +0.07 88.06 −0.16 1.357 +0.019 0.055 +0.036

+ MIE Laplace σopt 69.89 +0.64 90.94 +0.46 1.192 −0.306 0.059 −0.122 68.25 +0.10 88.14 −0.08 1.360 +0.022 0.070 +0.051

+ MIE Laplace Topt σopt 69.84 +0.59 91.09 +0.61 1.133 −0.364 0.017 −0.165 68.31 +0.16 88.11 −0.11 1.356 +0.018 0.052 +0.032

M
ed

iu
m

MSDNet (vanilla) 74.12 91.94 1.549 0.190 72.78 91.01 1.123 0.033
+ Topt 73.96 −0.17 92.05 +0.10 1.063 −0.486 0.078 −0.112 72.78 −0.00 91.01 +0.00 1.123 +0.000 0.033 +0.000

+ Laplace 73.96 −0.16 91.94 −0.00 1.436 −0.113 0.172 −0.018 72.69 −0.09 91.04 +0.03 1.117 −0.006 0.012 −0.021

+ Laplace Topt 73.98 −0.15 92.01 +0.07 1.056 −0.493 0.070 −0.120 72.68 −0.10 90.98 −0.03 1.117 −0.005 0.013 −0.020

+ Laplace σopt 74.18 +0.05 91.85 −0.09 1.405 −0.144 0.164 −0.026 72.70 −0.08 91.00 −0.01 1.117 −0.005 0.013 −0.020

+ Laplace Topt σopt 73.92 −0.20 92.01 +0.06 1.070 −0.479 0.083 −0.107 72.72 −0.07 91.03 +0.03 1.118 −0.005 0.018 −0.015

+ MIE 75.03 +0.91 92.97 +1.03 1.011 −0.538 0.050 −0.140 72.98 +0.20 91.12 +0.11 1.119 −0.004 0.042 +0.009

+ MIE Topt 74.94 +0.82 93.23 +1.29 0.941 −0.608 0.028 −0.162 72.99 +0.21 91.09 +0.08 1.119 −0.004 0.038 +0.005

+ MIE Laplace 74.99 +0.86 93.01 +1.07 0.990 −0.559 0.032 −0.158 72.95 +0.17 91.15 +0.14 1.128 +0.005 0.065 +0.032

+ MIE Laplace Topt 74.96 +0.84 93.19 +1.24 0.947 −0.602 0.015 −0.175 72.88 +0.10 91.06 +0.06 1.124 +0.001 0.045 +0.012

+ MIE Laplace σopt 75.04 +0.92 92.95 +1.01 0.989 −0.560 0.031 −0.159 72.97 +0.19 91.12 +0.11 1.126 +0.003 0.064 +0.030

+ MIE Laplace Topt σopt 74.99 +0.86 93.23 +1.29 0.944 −0.605 0.026 −0.164 73.04 +0.26 90.96 −0.05 1.121 −0.002 0.031 −0.003

L
ar

ge

MSDNet (vanilla) 75.36 92.78 1.475 0.178 74.33 91.57 1.066 0.050
+ Topt 75.27 −0.10 92.76 −0.02 0.984 −0.491 0.059 −0.119 74.33 +0.00 91.57 +0.00 1.066 +0.000 0.050 +0.000

+ Laplace 75.41 +0.05 92.76 −0.02 1.347 −0.128 0.157 −0.021 74.25 −0.08 91.55 −0.02 1.052 −0.014 0.019 −0.031

+ Laplace Topt 75.28 −0.08 92.79 +0.01 0.999 −0.476 0.077 −0.101 74.25 −0.08 91.55 −0.02 1.053 −0.012 0.019 −0.031

+ Laplace σopt 75.36 −0.01 92.75 −0.04 1.338 −0.137 0.157 −0.020 74.25 −0.08 91.55 −0.03 1.053 −0.013 0.017 −0.033

+ Laplace Topt σopt 75.32 −0.05 92.83 +0.05 0.996 −0.479 0.075 −0.103 74.29 −0.04 91.53 −0.04 1.053 −0.013 0.020 −0.030

+ MIE 76.32 +0.95 93.50 +0.72 0.949 −0.525 0.061 −0.117 74.82 +0.49 91.88 +0.30 1.029 −0.037 0.028 −0.022

+ MIE Topt 76.22 +0.85 93.75 +0.97 0.886 −0.589 0.032 −0.145 74.90 +0.58 91.87 +0.30 1.029 −0.037 0.022 −0.028

+ MIE Laplace 76.43 +1.07 93.55 +0.76 0.924 −0.551 0.040 −0.137 74.76 +0.43 91.90 +0.33 1.035 −0.030 0.052 +0.002

+ MIE Laplace Topt 76.30 +0.93 93.74 +0.96 0.887 −0.588 0.036 −0.142 74.86 +0.53 91.78 +0.21 1.032 −0.034 0.026 −0.024

+ MIE Laplace σopt 76.33 +0.96 93.54 +0.75 0.925 −0.550 0.043 −0.135 74.81 +0.49 91.87 +0.29 1.033 −0.032 0.050 −0.000

+ MIE Laplace Topt σopt 76.34 +0.98 93.84 +1.05 0.885 −0.590 0.025 −0.152 74.80 +0.47 91.81 +0.24 1.032 −0.034 0.032 −0.019

as the best temperature after optimization ended up being
the default temperature, suggesting that the vanilla MSD-
Net on ImageNet is already quite well calibrated. This is
reflected in the results in Tab. 6 also through the fact that our
methods that attempt to improve decision-making through
improved calibration, do not achieve major improvement in
top-1 accuracy on ImageNet, as there is not much room to
improve calibration over the vanilla MSDNet. This is likely
explained by the vanilla MSDNet underfitting the ImageNet
data, as even the largest MSDNet architecture we used for
ImageNet is several magnitudes smaller than the state-of-the
art models. On CIFAR-100 and Caltech-256 the MSDNet
models are large enough to overfit, as is usually the case
for most models on most datasets, and we see considerable
improvements in also top-1 accuracy.

In order to investigate the contribution of better decision-
making on the improvements in the predictive performance,
we performed an experiment trying to separate the improve-
ment due to better decision-making from the improvement
due to better predictions at each individual intermediate

exit of the dynamic neural network. In this experiment,
we replaced the vanilla model decision-making with the
decision-making of our model, while using the vanilla model
predictions for calculating the results. Full results for CIFAR-
100 are in Fig. 9 showing that our approach improves both
decision-making (orange curve vs. light blue curve) and
prediction quality (light blue curve vs. black curve). Interest-
ingly, apart from improving accuracy, better decision-making
also improves calibration and uncertainty estimates, as seen
from the improved ECE and NLPD. However, this experi-
ment is problematic in providing information on decision-
making quality, as one model is making decisions using
predictions from another model, potentially resulting in false
interpretation of bad decision-making, if different models
predict different samples correctly.

In addition to the experiments shown, we experimented
using predictive variance or entropy as the uncertainty met-
ric to make decisions on when to exit the MSDNet pipeline.
In our experiments these metrics performed worse than the
model predicted confidence, and hence we use model pre-



Table 7. Table of Top-1/Top-5 accuracy, NLPD, ECE for different
models on Caltech-256. All numbers are averages over a range of
computational budgets. ‘MIE Lap Topt σopt’-model corresponds to
‘Our model’. Topt and σopt refer to grid search optimisation of the
temperature scale and Laplace prior variance, respectively. ntrain

is the number of training samples, d is the input dimensionality,
c is the number of classes, and nbatch is the batch size. The red
and green numbers show the decrease or increase in performance
compared to MSDNet (vanilla). The best performing model for
each metric and each model size, on each dataset, is shown in bold.

CALTECH-256
(ntrain, d, c, nbatch) (25607, 150528, 257, 128)

Top-1 ACC ↑ Top-5 ACC ↑ NLPD ↓ ECE ↓

Sm
al

l

MSDNet (vanilla) 61.0 78.2 2.16 0.18
+ Topt 60.8 −0.3 78.4 +0.2 1.84 −0.31 0.01 −0.16

+ Lap 60.7 −0.3 78.0 −0.2 1.98 −0.18 0.06 −0.12

+ Lap Topt 60.5 −0.6 78.3 +0.0 1.86 −0.29 0.05 −0.13

+ Lap σopt 60.6 −0.4 78.0 −0.2 1.99 −0.17 0.06 −0.12

+ Lap Topt σopt 60.5 −0.5 78.1 −0.1 1.86 −0.29 0.05 −0.13

+ MIE 61.9 +0.9 78.8 +0.6 1.94 −0.21 0.08 −0.10

+ MIE Topt 61.5 +0.5 79.1 +0.9 1.79 −0.37 0.04 −0.13

+ MIE Lap 61.8 +0.7 78.8 +0.5 1.86 −0.30 0.04 −0.14

+ MIE Lap Topt 61.5 +0.5 79.1 +0.9 1.82 −0.34 0.08 −0.10

+ MIE Lap σopt 61.8 +0.8 79.0 +0.8 1.86 −0.30 0.03 −0.14

+ MIE Lap Topt σopt 61.7 +0.6 79.0 +0.8 1.81 −0.34 0.09 −0.09

M
ed

iu
m

MSDNet (vanilla) 63.8 80.2 1.98 0.17
+ Topt 63.5 −0.3 80.2 +0.0 1.70 −0.28 0.02 −0.15

+ Lap 63.4 −0.4 79.4 −0.8 1.80 −0.18 0.03 −0.14

+ Lap Topt 63.3 −0.5 79.8 −0.3 1.73 −0.25 0.08 −0.09

+ Lap σopt 63.4 −0.4 79.9 −0.3 1.79 −0.19 0.04 −0.13

+ Lap Topt σopt 63.4 −0.4 79.9 −0.3 1.74 −0.24 0.07 −0.10

+ MIE 65.1 +1.3 81.4 +1.2 1.72 −0.26 0.08 −0.09

+ MIE Topt 64.6 +0.9 81.7 +1.5 1.61 −0.37 0.03 −0.14

+ MIE Lap 64.9 +1.2 81.2 +1.1 1.67 −0.31 0.06 −0.11

+ MIE Lap Topt 64.5 +0.7 81.3 +1.1 1.67 −0.31 0.09 −0.08

+ MIE Lap σopt 64.7 +0.9 81.2 +1.0 1.67 −0.31 0.04 −0.13

+ MIE Lap Topt σopt 64.3 +0.5 81.3 +1.1 1.65 −0.33 0.08 −0.09

L
ar

ge

MSDNet (vanilla) 64.9 80.7 1.90 0.16
+ Topt 64.8 −0.1 80.7 −0.0 1.64 −0.26 0.03 −0.13

+ Lap 64.3 −0.6 80.1 −0.6 1.72 −0.18 0.04 −0.12

+ Lap Topt 64.4 −0.5 80.0 −0.7 1.68 −0.22 0.07 −0.09

+ Lap σopt 64.8 −0.1 80.1 −0.6 1.73 −0.17 0.03 −0.13

+ Lap Topt σopt 64.7 −0.2 80.7 +0.0 1.65 −0.25 0.04 −0.12

+ MIE 65.9 +0.9 82.4 +1.8 1.62 −0.28 0.06 −0.10

+ MIE Topt 65.9 +1.0 82.5 +1.9 1.54 −0.36 0.04 −0.12

+ MIE Lap 65.9 +1.0 82.1 +1.5 1.59 −0.31 0.08 −0.08

+ MIE Lap Topt 65.9 +0.9 82.4 +1.8 1.59 −0.31 0.11 −0.05

+ MIE Lap σopt 65.9 +0.9 82.4 +1.7 1.58 −0.31 0.07 −0.09

+ MIE Lap Topt σopt 65.6 +0.7 82.5 +1.8 1.58 −0.32 0.09 −0.07

dictive confidence for decision-making in all experiments
shown in this paper.

C. Analysis on Laplace Approximation and
MIE Computational Cost

Using the Laplace approximation requires calculating
the approximate inverse Hessians H−1 and Σb for the
last layer weights and biases respectively, for each inter-
mediate classifier. As this can be precomputed before ob-
serving the test data, the only additional test time cost of
the Laplace approximation comes from transforming the
Laplace approximated distribution for the last layer weights
N(θ |θMAP,Σ) to an output predictive distribution p(ẑi |xi)
and sampling from this distribution for nMC times. Recall
that ŷi = softmax(ẑi), where ẑi = Wϕi + b.

Naïve approach We use the KFAC approximation to the

inverse Hessian H−1 = V−1 ⊗ U−1. Let W ∈ Rp×c,
b ∈ R1×c denote the weight matrix and bias terms of the
kth exit, and ϕi ∈ Rp denote the features of input sample xi

before the last linear layer of the kth exit. Then the additional
cost associated to a naïve implementation of the Laplace
approximation at the kth exit is based on

ẑi ∼ N(W⊤
MAPϕi + bMAP︸ ︷︷ ︸

also needed for vanilla

, (ϕ⊤i Vϕi)U+Σb︸ ︷︷ ︸
(p+1)(2p−1)+2c2

) (5)

with additional costs to compute the Cholesky factorisation
( 13c

3) and rescaling and shifting the samples drawn from a
standard normal, resulting in a total of

FLOPsnaïve = 2c2(nMC + 1) +
1

3
c3 + 2p2 + p− 1. (6)

additional FLOPs. The calculation of the mean in Eq. (5)
does not add computation as this operation is also performed
to obtain the vanilla MSDNet prediction. The cubic scaling
of FLOPs with the number of classes is what makes the
naïve approach prohibitively expensive to be viable in the
budget restricted regime if the number of classes is large.
The Cholesky factorization of the covariance matrix that is
required for sampling can not be pre-computed before test
time as the covariance matrix (ϕ⊤i Vϕi)U + Σb depends
on the test samples.
Efficient approach Sampling from the Laplace predic-
tive distribution can be made more efficient by absorbing
the bias terms into the weight matrix, i.e., Ŵ ∈ Rp+1×c.
This appends an additional dimension to ϕ and V which
we now denote by ϕ̂ = (ϕ⊤, 1)⊤ and V̂, respectively.
Now, the output predictive distribution takes the form ẑi ∼
N(Ŵ⊤

MAPϕ̂i, (ϕ̂
⊤
i V̂ϕ̂i)U), which means that the costly op-

erations can all be pre-computed offline. Most notably, al-
though the covariance matrix (ϕ̂⊤i V̂ϕ̂i)U still depends on
the test samples, the test sample dependent term ϕ̂⊤i V̂ϕ̂i

is a scalar and can be taken out of the costly Cholesky fac-
torization, which allows performing this on the matrix U
defore test time. This means that for one MC sample l, the
pre-softmax output can be evaluated as

ẑ
(l)
i = Ŵ⊤

MAPϕ̂i︸ ︷︷ ︸
also needed for vanilla

+

√
ϕ̂⊤i V̂ϕ̂i︸ ︷︷ ︸

(p+2)(2p+1)

(
Lg(l)

)︸ ︷︷ ︸
2c2−c

, (7)

where g(l) ∼ N(0, I) and L is the pre-calculated Cholesky
factor of U. Even the samples g(l) can be pre-drawn and pre-
multiplied with L, which further reduces the computational
cost to

FLOPsefficient = 2cnMC + 2p2 + 5p+ 2. (8)

Based on this analysis, Fig. 10 shows the incremental
test time computational cost of applying Laplace approxima-
tion on top of the vanilla MSDNet model for CIFAR-100,



Table 8. Table of Top-1/Top-5 accuracy, negative log-predictive density (NLPD), and expected calibration error (ECE) for different models
on CIFAR-100. ‘Our model’ corresponds to ‘MIE Laplace Topt σopt’-model in other result tables. These results show a decision-making
experiment, where vanilla MSDNet and ‘Our model’ results are compared to results obtained by using a setup where our model is used for
decision-making, and predictions are from vanilla MSDNet. The best-performing model for each metric and each model size is shown in bold.

CIFAR-100
(ntrain, d, c, nbatch) (50000, 3072,100, 64)

Top-1 ACC ↑ Top-5 ACC ↑ NLPD ↓ ECE ↓

Sm
al

l MSDNet (vanilla) 69.25 90.48 1.498 0.182
Vanilla predictions, our model decisions 69.33 +0.09 90.60 +0.12 1.300 −0.197 0.108 −0.074

Our model 69.84 +0.59 91.09 +0.61 1.133 −0.364 0.017 −0.165

M
ed

iu
m MSDNet (vanilla) 74.12 91.94 1.549 0.190

Vanilla predictions, our model decisions 74.51 +0.39 92.20 +0.25 1.460 −0.089 0.168 −0.022

Our model 74.99 +0.86 93.23 +1.29 0.944 −0.605 0.026 −0.164

L
ar

ge MSDNet (vanilla) 75.36 92.78 1.475 0.178
Vanilla predictions, our model decisions 75.72 +0.36 92.71 −0.08 1.388 −0.086 0.162 −0.015

Our model 76.34 +0.98 93.84 +1.05 0.885 −0.590 0.025 −0.152
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Figure 9. Accuracy (Top-1 & Top-5) and uncertainty metrics (NLPD and ECE) on a budgeted batch classification task as a function of
average computational budget per image (FLOPs) on the CIFAR-100 data set with a small/medium/large model. These results show a
decision-making experiment, where vanilla MSDNet and ‘Our model’ results are compared to results obtained by using a setup where our
model is used for decision-making, and predictions are from vanilla MSDNet (labelled ‘Vanilla predictions’).

ImageNet, and Caltech-256, showing the increase in com-
putation both for the efficient sampling approach and for
the naïve sampling approach. For all data sets the small,
medium, and large models are analysed separately, and for
each model, the increase in computational cost at each inter-
mediate exit is shown. The calculation of FLOPs in these
figures differs from what is shown in the formulas above, as
the FLOPs in the figure results are ‘practical FLOPs’ that
take into account the ability of most hardware to calculate
sequential multiplication and addition in a single operation,
resulting in one FLOP instead of two for such a pair of
operations. Practical FLOPs are used also for the FLOPs
calculation of all other numerical results in this paper. The
results of the figure are obtained considering that 50 MC
samples are drawn from the Laplace approximated predictive
output distribution. The figures show that naïve approach
of Laplace approximation adds considerable computation,
but this can be mitigated by using the efficient sampling
approach. The remaining added computational cost of effi-
cient Laplace that is hard to see in Fig. 10 is 0.1–0.4% on
CIFAR-100, 0.06–0.16% on ImageNet, and 0.04–0.15% on
Caltech-256 depending on the exit used. As a comparison,
using a last layer MC dropout with 50 samples would add

3–9% computation on CIFAR-100, 4–10% on ImageNet,
and 1–3% on Caltech-256.

Using MIE adds even less computation compared to our
efficient Laplace. At each exit apart from the first one, the
c dimensional output is multiplied by the weight averaging
weight wk, added to the cumulative total sum, which is
then divided by the total weight

∑k
j=1 wj , adding up to

3c additional FLOPs at each exit after the first one. This
results to additional 0.001–0.002% computation on CIFAR-
100, 0.0002–0.0009% on ImageNet, and 0.0001–0.0002%
on Caltech-256.
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Figure 10. Analysis on the test time computational cost of the Laplace approximation for different models. First rows show bar graphs
comparing the computational costs of vanilla MSDNet (orange) and MSDNet with Laplace approximation (black) at each intermediate exit.
The solid black bars represent the computational cost of efficient sampling from the predictive distribution, while the grey bars show the cost
of naïve sampling. The second rows show the relative computational cost of using Laplace approximation on top of the vanilla MSDNet,
both for the efficient and the naïve sampling approach. The figures assume 50 MC samples are drawn from the predictive distribution.


