
Bag of Tricks for Fully Test Time Adaptation

Saypraseuth Mounsaveng∗, Florent Chiaroni, Malik Boudiaf, Marco Pedersoli, Ismail Ben Ayed
ÉTS Montréal, Canada

1. TTA Problem settings

In this section, we provide an overview of the different
TTA settings.

Setting So
ur

ce
D

at
a

Ta
rg

et
D

at
a

Tr
ai

ni
ng

L
os

s

Te
st

in
g

L
os

s

O
ffl

in
e

O
nl

in
e

So
ur

ce
A

cc
.

Fine-tuning ✗ xt, yt L(xt, yt) - ✓ ✗ NC
Continual learning ✗ xt, yt L(xt, yt) - ✓ ✗ M

Unsupervised
domain adaptation xs, ys xt L(xs, ys) + L(xs, xt) - ✓ ✗ M

Test-time training xs, ys xt L(xs, ys) + L(xs) L(xt) ✗ ✓ NC
Fully test-time

adaptation (FTTA) ✗ xt ✗ L(xt) ✗ ✓ NC

Table 1. Overview of TTA problem settings [3]. In our work, we
consider the Fully Test-Time Adaptation (FTTA) scenario, which
is source-free and online. In last column, NC=Not Considered and
M=Maintained.

2. Technical details

In this section, we provide additional technical details.

In Tab. 2, we compare the size of the different architec-
tures mentioned in our work. In Tab. 3, we provide the links
to the source code of the methods we compare and finally in
Tab. 4, we provide the links to the weights of the pretrained
models used in our experiments.

Architecture Number of parameter
ResNet50-BN 25M
ResNet50-GN 25M
ResNet-101 43M
VitBase-LN 86M
WRN28-10 36.5M
WRN40-2 2.2M

Table 2. Number of parameters of each architecture used in
our experimental setup.

*Corresponding author: saypraseuth.mounsaveng.1@etsmtl.net
†Code is available at https://github.com/smounsav/tta_

bot

Method Code Link
Tent [9] https://github.com/DequanWang/tent
SAR [4] https://github.com/mr-eggplant/SAR
Delta [13] https://github.com/bwbwzhao/DELTA
DUA [2] https://github.com/jmiemirza/DUA
Hebbian [8] n/a

Table 3. Links to the source code of the methods mentioned in
the article.

Architecture Code Link
ResNet50-BN https://download.pytorch.org/models/resnet50–9c8e357.pth torchvision [5]
ResNet50-GN timm [10]
ResNet-101 https://github.com/Albert0147/NRC SFDA [12]
VitBase-LN timm [10]
WRN28-10 RobustBench [1]
WRN40-2 RobustBench [1]
SVHN model Pytorch-Playground [11]

Table 4. Links to the weights of the pretrained models men-
tioned in the paper.

3. Algorithms
In this section, we present the details of the algorithms

used in our experiments.
In Algo. 1, we introduce the DOT [13] algorithm used

in the class rebalancing scenario.

Algorithm 1 Dynamic Online reweighTing (DOT) [13]
Input: inference step t := 0; test stream samples {xj}; pre-trained model
f{θ0,a0}; class-frequency vector z0; loss function L; smooth coefficient λ.
while the test mini-batch {xmt+b}Bb=1

arrives do
t← t + 1
// output predictions
{pmt+b}Bb=1

, f{θt−1,at} ←Forward({xmt+b}Bb=1
, f{θt−1,at−1})

for b = 1 to B do
// predicted label
k∗
mt+b = argmaxk∈[1,K]pmt+b[k]

// assign sample weight
wmt+b = 1/(zt−1[k

∗
mt+b] + ϵ)

end for
// normalize sample weight
w̄mt+b = B.wmt+b/Σ

B
b′=1

wmt+b′ , b = 1, 2, . . . , B
// combine sample weight with loss
l = 1

BΣB
b=1w̄mt+b.L(pmt + b)

// update θ
f{θt,at} ←Backward&Update(l, f{θt−1,at})

// update z
zt ← λzt−1 +

(1−λ)
B ΣB

b=1pmt+b

end while

1



4. Comparison to other methods – Additional
experiments

In this section, we provide additional results to extend
the comparison of our selected methods to other methods.

In Tab. 5, we present results for experiments on
CIFAR10-C on 3 different architectures ResNet26,
WRN28-10 and WRN40-2. On ResNet26, BoT obtains the
best results, whereas Hebbian Learning [8] performs best
on WRN28-10 and WRN40-2. On the last 2 architectures,
updating the model using hebbian learning seems more
performant than using methods updating only the batch
norm layers.

Methods gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg Avg.

R
es

N
et

26

Source 67.7 63.1 69.9 55.3 56.6 42.2 50.1 31.6 46.3 39.1 17.1 74.6 34.2 57.9 31.7 49.2
TTT [7] 45.6 41.8 50.0 21.8 46.1 23.0 23.9 29.9 30.0 25.1 12.2 23.9 22.6 47.2 27.2 31.4

NORM [6] 44.6 43.7 49.1 29.4 45.2 26.2 26.9 25.8 27.9 23.8 18.3 34.3 29.3 37.0 32.5 32.9
DUA [2] 34.9 32.6 42.2 18.7 40.2 24.0 18.4 23.9 24.0 20.9 12.3 27.1 27.2 26.2 28.7 26.8

Hebbian [8] 33.2 30.6 38.2 17.7 41.2 20.8 17.4 24.0 27.2 20.4 13.5 21.1 28.4 23.7 28.9 25.8
TENT [9] 39.4 38.8 47.9 19.9 45.0 23.2 20.6 28.1 32.1 24.5 16.1 26.7 32.4 30.6 35.5 30.7
SAR [4] 27.0 24.8 35.2 14.3 34.0 15.9 14.6 18.5 19.3 15.5 11.5 15.5 24.0 18.5 24.7 20.9

Delta [13] 27.6 26.0 34.7 13.6 33.8 16.1 13.7 18.6 19.5 15.0 10.0 13.7 24.1 17.9 24.7 20.6
BoT 27.8 25.2 34.8 13.4 33.2 15.2 13.4 18.5 19.2 14.8 9.9 13.6 23.7 18.1 24.4 20.3

W
R

N
28

-1
0

Source 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5
NORM [6] 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3 20.4
DUA [2] 27.4 24.6 35.3 13.1 34.9 14.6 11.6 16.8 17.5 13.1 7.6 14.1 22.7 19.3 26.2 19.9

Hebbian [8] 23.6 21.4 30.9 11.0 31.1 13.0 10.9 14.2 15.5 13.0 8.0 10.3 21.8 16.7 22.4 17.6
TENT [9] 24.8 23.5 33.0 12.0 31.8 13.7 10.8 15.9 16.2 13.7 7.9 12.1 22.0 17.3 24.2 18.6
SAR [4] 24.4 23.1 31.4 12.9 31.4 14.1 12.4 17.4 17.7 15.2 8.4 13.1 21.9 18.8 23.8 19.1

Delta [13] 24.3 22.0 31.2 11.6 30.9 12.9 10.8 15.3 15.7 13.1 7.8 10.2 21.6 16.6 23.5 17.8
BoT 24.1 21.9 31.4 11.7 31.0 12.9 10.7 15.3 15.6 13.2 7.9 9.9 21.7 16.6 23.6 17.8

W
R

N
40

-2

Source 28.8 22.9 26.2 9.5 20.6 10.6 9.3 14.2 15.3 17.5 7.6 20.9 14.7 41.3 14.7 18.3
NORM [6] 18.7 16.4 22.3 9.1 22.1 10.5 9.7 13.0 13.2 15.4 7.8 12.0 16.4 15.1 17.6 14.6
DUA [2] 15.4 13.4 17.3 8.0 18.0 9.1 7.7 10.8 10.8 12.1 6.6 10.9 13.6 13.0 14.3 12.1

Hebbian [8] 13.4 12.3 15.0 7.5 16.0 8.7 7.7 9.1 9.6 10.1 6.4 8.2 13.3 9.3 13.3 10.7
TENT [9] 15.7 13.2 18.8 7.9 18.1 9.0 8.0 10.4 10.8 12.4 6.7 10.0 14.0 11.4 14.8 12.1
SAR [4] 14.7 12.7 17.2 8.4 17.2 9.4 8.5 10.6 10.7 11.8 7.3 9.8 13.8 11.4 14.4 11.9

Delta [13] 14.4 12.3 16.9 7.6 16.8 8.7 7.6 9.8 10.0 10.6 6.5 8.3 13.6 10.4 14.5 11.2
BoT 14.3 12.3 16.7 7.6 16.9 8.8 7.7 9.8 9.9 10.8 6.5 9.1 13.7 10.7 14.4 11.3

Table 5. Top-1 Classification Error (%) for each corruption on
CIFAR10-C at the highest severity level (Level 5). The archi-
tecture used in the experiments are ResNet26 (top), WRN28-10
(middle) and WRN40-2 (bottom). Sources to pretrained weights
are available in Tab. 4. Results for TTT, NORM, DUA, TENT and
Hebbian are reported from [8]. Other results were the average of
3 runs using implementations provided by respective authors and
documented in Tab. 3. Batch size used is 128 and follows [8]. Best
results are shown in bold.

Methods gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpx Avg.

W
R

N
40

-2

Source 65.7 60.1 59.1 32.0 51.0 33.6 32.4 41.4 45.2 51.4 31.6 55.5 40.3 59.7 42.4 46.7
NORM [6] 44.7 44.2 47.4 32.4 46.4 32.9 33.0 39.0 38.4 45.3 30.2 36.6 40.6 37.2 44.2 39.5
DUA [2] 42.2 40.9 41.0 30.5 44.8 32.2 29.9 38.9 37.2 43.6 29.5 39.2 39.0 35.3 41.2 37.6

Hebbian [8] 38.4 37.1 36.2 28.4 41.0 29.3 29.7 32.2 33.1 36.1 26.4 30.9 36.2 30.8 38.3 33.6
TENT [9] 40.3 39.9 41.8 29.8 42.3 31.0 30.0 34.5 35.2 39.5 28.0 33.9 38.4 33.4 41.4 36.0
SAR [4] 40.7 39.4 39.1 29.8 42.3 31.1 29.9 34.3 35.1 37.0 28.2 31.5 37.9 32.2 40.4 35.3

Delta [13] 40.7 39.6 39.1 29.1 41.9 30.8 29.7 34.5 34.7 37.0 27.5 30.3 37.9 32.2 40.4 35.0
BoT 40.5 39.1 39.1 29.1 41.8 30.7 29.5 34.3 34.7 36.9 27.5 30.2 38.1 32.1 40.3 34.9

Table 6. Top-1 Classification Error (%) for each corruption on
CIFAR100-C at the highest severity level (Level 5). The archi-
tecture used in the experiments is WRN-40-2. Source to pretrained
weights is available in Tab. 4. Results for NORM, DUA, TENT
and Hebbian are reported from [8]. Other results were the average
of 3 runs using implementations provided by respective authors
and documented in Tab. 3. Batch size used is 128 and follows [8].
Best results are shown in bold.

In Tab. 6, we present results for experiments on
CIFAR100-C dataset on WRN40-2 network. Hebbian

learning [8] gets slightly better results than BoT models
updating only the BatchNorm layers.

Methods MNIST MNIST-M USPS Avg.

SV
H

N
[1

1]

NORM [6] 39.6 52.1 41.4 44.4
Hebbian [8] 31.2 47.9 32.6 37.2
TENT [9] 45.8 56.2 48.3 50.1
SAR [4] 36.5 54.4 43.2 44.7

Delta [13] 54.4 48.3 48.3 50.3
BoT 27.9 48.3 38.9 38.4

Table 7. Top-1 Classification Error (%) for test-time adapta-
tion on digit recognition. The architecture used in the ’svhn’
model from pytorch-playground repository. Source to pretrained
weights is available in Tab. 4. Results for NORM, TENT and Heb-
bian are reported from [8]. Other results were the average of 3 runs
using implementations provided by respective authors and docu-
mented in Tab. 3. Batch size used is 128 and follows [8]. Best
results are shown in bold.

In Tab. 7, we present results for experiments on test-time
adaptation for digit recognition. More precisely, we adapt
a model trained on SVHN dataset to 3 different datasets,
MNIST, MNIST-M and USPS. On MNIST, BoT performs
best, however on the 2 other datasets, Hebbian Learning [8]
performs best. On average over the 3 datasets, Hebbian
Learning performs best, beating other methods updating
only the BatchNorm Layers.



References
[1] Francesco Croce, Maksym Andriushchenko, Vikash Se-

hwag, Edoardo Debenedetti, Nicolas Flammarion, Mung
Chiang, Prateek Mittal, and Matthias Hein. Robustbench:
a standardized adversarial robustness benchmark. In Ad-
vances in Neural Information Processing Systems (NeurIPS)
Datasets and Benchmarks Track, 2021. 1

[2] M. Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and
Horst Bischof. The norm must go on: Dynamic unsuper-
vised domain adaptation by normalization. Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 1,
2

[3] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen,
Shi Dong Zheng, Peilin Zhao, and Mingkui Tan. Efficient
test-time model adaptation without forgetting. In Interna-
tional Conference on Machine Learning (ICML), 2022. 1

[4] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen,
Yaofo Chen, Peilin Zhao, and Mingkui Tan. Towards stable
test-time adaptation in dynamic wild world. In International
Conference on Learning Representations (ICLR), 2023. 1, 2

[5] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imper-
ative style, high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2019. 1

[6] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bring-
mann, Wieland Brendel, and Matthias Bethge. Improving
robustness against common corruptions by covariate shift
adaptation. Advances in Neural Information Processing Sys-
tems (NeurIPS), 2020. 2

[7] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei
Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts. In In-
ternational Conference on Machine Learning (ICML), 2020.
2

[8] Yushun Tang, Ce Zhang, Heng Xu, Shuoshuo Chen, Jie
Cheng, Luziwei Leng, Qinghai Guo, and Zhihai He. Neuro-
modulated hebbian learning for fully test-time adaptation.
In Conference on Computer Vision and Pattern Recognition
(CVPR), 2023. 1, 2

[9] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. In International Conference on
Learning Representations (ICLR), 2021. 1, 2

[10] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 1

[11] Aaron Xichen. Pytorch-playground. https://github.
com/aaron-xichen/pytorch-playground, 2023.
1, 2

[12] Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Herranz,
and Shangling Jui. Exploiting the intrinsic neighborhood

structure for source-free domain adaptation. In Advances in
Neural Information Processing Systems (NeurIPS), 2021. 1

[13] Bowen Zhao, Chen Chen, and Shutao Xia. Delta:
degradation-free fully test-time adaptation. In International
Conference on Learning Representations (ICLR), 2023. 1, 2


