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We provide the following supplementary materials in
this appendix:

¢ In Sec. 1, we illustrate the distribution of each dataset
(i.e., PASCAL VOC, MS COCO, and PASCAL-B)
and the procedure of building PASCAL-B dataset thor-
oughly.

* In Sec. 2, we briefly explain each models which used
for evaluation.

e In Sec. 3, we describe the implementation detail of
each method we use.

* In Sec. 4, we give a concise explanation of elastic
weight consolidation [4].

¢ In Sec. 5, we demonstrate the effectiveness of our pro-
posed metric, dataset, and loss function with fully-
supervised methods.

* In Sec. 6, we provide the qualitative results of each
method on three datasets: PASCAL VOC, MS COCO,
and PASCAL-B.

1. Dataset details
1.1. Number of instances per class per size

Fig. 1 shows the per-class per-size distribution of vali-
dation set for each dataset in detail. As shown in Fig. 1(a),
PASCAL VOC 2012 [5] suffers from an imbalance prob-
lem in terms of class and size of instances. In particular,
it has too many instances for the person class (i.e., 15th
class) compared to the other classes. Some classes even
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do not have small instances. For PASCAL VOC, large in-
stances account for 50% of the total number of instances
while small instances only take 18.2%.

Secondly, MS COCO [10] also has a serious class imbal-
ance problem with some categories (Fig. 1(b)). Addition-
ally, it has imbalanced distribution in terms of instance size
though the amount is less than PASCAL VOC. As in Ta-
ble 1, the number of small instances makes up about 43.7%
of the total instances while that of large instances is only
24.3%.

Different from these two datasets, PASCAL-B is the
more balanced dataset. Fig. | (c) illustrates that our dataset
alleviates the problems of class and size imbalance. In other
words, PASCAL-B does not have the case that a specific
class has too many instances and it has similar number of
instances for all sizes as shown in Table 1.

Instance size | PASCAL VOC MS COCO PASCAL-B
Large 1,668 (49.0%) | 65407 (24.3%) | 1,283 (32.1%)
Medium 1118 (32.8%) | 86,469 (32.1%) | 1,468 (36.7%)
Small 621 (182%) | 117,789 (43.7%) | 1,245 (31.2%)
Total 3,407 269,665 3,996

Table 1. The number of instances by size for each dataset.

1.2. Process of constructing new dataset

Firstly, we collected images from the LVIS [6] which
includes at least one of 20 categories of the PASCAL
VOC classes. However, since potted plant class does
not exist in the LVIS dataset, we collected images with
potted plant class from MS COCO [10]. Then, we
converted the annotations which do not belong to the 20
categories of the PASCAL VOC dataset into background
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Figure 1. Dataset distribution. We plot the number of instances of
each class by size.

class. After finishing the above process, 35,242 images re-
main. Among the remaining images, a few images have im-
proper annotation as shown in Fig. 2. Therefore, two com-
puter vision experts (authors of this paper) manually filtered
out such images for two weeks and we had 15,263 images
left. Finally, we randomly sampled images to ensure the
balance over classes and object size distribution and con-
structed PASCAL-B which consists of 1,137 images with
20 classes. We give some sample images for the PASCAL-
B dataset in Fig. 3.

2. Description for evaluated methods

We choose several methods with different weak-level su-
pervision to validate the comprehensiveness of our metric
and method.

Bounding box supervision: BBAM and BANA BBAM [§]
utilizes the existing object detector Faster R-CNN [14] to
highlight the regions where the detector concentrate on.
They call these highlighted maps a bounding box attribu-
tion map. Then, they expand their bounding box attribution
map by introducing a perturbation method. It distinguishes
a small subset of the input image that leads to the same pre-
diction as to the original image. Using perturbation meth-
ods, they try to diminish the useless information (i.e., back-

Improper
Annotation

Improper

Image Annotation

Figure 2. Example images with improper annotations. Red bound-
ing boxes indicate missing annotations.

ground) for the detector.

In BANA [12], Oh et al. find that the background re-

gions around the bounding box are consistent. Based on the
observation, they effectively distinguish the foreground and
background regions in a bounding box by computing the
cosine similarity between features in the bounding box and
out of it. Additionally, they try to reduce the effect of noisy
labels by utilizing the distances between CNN features and
classifier weights.
Saliency supervision: EDAM, NS-ROM and RCA
EDAM [17] separates the class-specific information from
the whole activation map by applying L2-normalization
along the channel dimension. Then it utilizes a self-attention
mechanism to highlight similar regions among the series of
class-specific activation maps. In the end, it enhances the
results by using refined saliency maps with the threshold
according to the value of the activation map.

NS-ROM [19] exploits the objects in non-salient regions.
Therefore, they introduce a graph-based global reasoning
unit to make the model learn global relations. Also, they
filter out the background regions using saliency supervi-
sion, while capturing the objects outside the saliency map
using class activation maps (CAMs). Finally, they enrich
their pseudo masks by setting more ignore pixels to gener-
ate new pseudo masks after training the segmentation net-
work. Then they train another segmentation network using
new pseudo masks.

RCA [21] bridges the gap between image-level seman-
tic information and pixel-level object regions by regional
semantic contrast and aggregation. Regional semantic con-
trast leverages a memory bank to enforce the embedding of
the pseudo region to get close to memory embedding of the
same category while pushing away from other categories.
Also, they utilize a non-parametric attention module called
semantic aggregation. It aggregates memory representations
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Figure 3. Sample image of PASCAL-B.

for each image and mines inter-image context to capture
more informative dataset-level semantics.

Natural Language Supervision: CLIM CLIM [18]
is built upon Contrastive Language-Image Pre-training
(CLIP) [13]. Firstly, it additionally defines background
classes for each image. Then, CLIM utilizes initial CAM to
generate foreground masked-out image I and background
masked-out image [p. Lastly, using CLIP, it calculates the
cosine similarity between these images and corresponding
text category labels. For I, the similarity with a ground-
truth label is maximized to gradually expand the activations
for the whole foreground objects, while the similarity with
the corresponding background label is minimized to decou-
ple the foreground from the background. On the other hand,
for I, the similarity with a ground-truth label is minimized
to recover more probable foreground contents.

Image supervision: IRN, CDA, AMN and RIB IRN []]
predicts a displacement of each pixel pointing to the cen-
troid to get the class agnostic map based on the rough se-
mantic segmentation map from CAMs. By incorporating
CAMs with a class-agnostic map, it obtains instance-wise
CAMs and refines the prediction map by the random-walk
algorithm.

CDA [16] is proposed to tackle the co-occurrence con-
text information problem for WSSS. It first cuts some sim-
ple object instances using predicted segmentation masks by
the trained network. Then it augments original images by
pasting the obtained instances, and re-train the network with
those augmented images.

The authors of AMN [9] raise an issue that global thresh-
olding for CAM can lead to low-quality pseudo mask. To
address this problem, they introduce new training objec-
tives which apply per-pixel classification and label condi-
tioning. Per-pixel classification makes discriminative part
be reduced while expanding the non-discriminative part.
Additionally, label conditioning is used to decrease the ac-
tivation of non-target classes.

In RIB [7], Lee et al. argue that CAMs focus on the dis-
criminative part because of the information bottleneck prob-
lem. The information bottleneck problem is that the only
information highly related to tasks remains when the infor-
mation goes backward of a layer in the network. According
to the other works related to information bottleneck theory,
it becomes worse with double-sided saturating activation
functions such as softmax. Inspired by this, they propose
to fine-tune the model with a one-sided saturating function
to alleviate information bottleneck while expanding CAMs
with global non-discriminative region pooling.

3. Implementation detail

All the experiment results of baseline methods [I, 7—

, 12,16=19,21] are reproduced by the official code, and
we strictly follow the hyper-parameter settings provided by
each paper. For the MS COCO dataset, we refer to the set-
tings of RIB [7]. We set 7 = 5 for L, and A = 500 for
L, in all cases. For balanced training with our loss func-
tion, we train the segmentation networks for 30k iterations



for the PASCAL VOC dataset. We use pixel-wise cross-
entropy loss for the first 20k, 15k, and 25k iterations, then
fine-tune them with L, until the end of training models for
BANA [12], EDAM [17], and others [1,9,16,18,19,21], re-
spectively. For the MS COCO dataset, the number of train-
ing iterations is 100k. We train the segmentation network
with pixel-wise cross-entropy loss for the first 40K itera-
tions, then fine-tune the network with L, for the remaining
iterations. Note that we do not change all the other hyper-
parameters of each baseline model.

All the experiments were done by one GeForce RTX
3090 GPU for PASCAL VOC and two RTX 3090 GPUs for
MS COCO, which take 11 hours and 53 hours, respectively.

4. Elastic weight consolidation

Elastic Weight Consolidation (EWC) [4] is a technique
for continual learning problem which tries to make the
model learn various tasks. EWC aims to find the optimal
point for the model to be optimized with several tasks. To
achieve this goal, EWC constrains the parameters of the
model which have a high correlation with the past training
data. In other words, EWC suppresses the change of param-
eters based on its importance for the previous task. The loss
function for EWC is defined as:

A
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where A\ controls the importance of the previous task. It
means that as the value of A gets larger, it suppresses the
updates of parameters more. F; shows the importance of -
th parameter for the previous task. It indicates the corre-
lation of parameters with past training data. In [4], it uti-
lizes the diagonal elements of the Fisher information ma-
trix. Lastly, (6; — 92’1») is the change of parameter between
present model (i.e., 0;) and previous model (i.e., 07 ,).

5. Extension to fully-supervised methods

In main paper, we demonstrate our evaluation metric,
dataset, and loss function for weakly-supervised methods.
However, they also can be applied in a fully-supervised
manner. Table 2 reports the accuracy of fully-supervised
methods [2,3,11,15,20] in terms of mIoU and IA-mIoU.
It shows the same tendency as the experiment results of
weakly-supervised methods except that the performances
are generally more increased than the weakly-supervised
methods when using our loss function.

6. Qualitative result

We show the visualization of prediction maps for each
method [1,3,7-9,12,16-19,21] on three datasets: PASCAL
VOC (from Fig. 4 to Fig. 13), MS COCO (from Fig. 14

Dataset PASCAL VOC
Method mIoU IA-mIoU IAg
FCN[11] 67.8 (+0.8)  59.8 (+4.9) 17.1 (+7.9)
PSP [20] 76.7 (+0.6) 652 (+54)  22.1 (+13.2)
DeepLabV1 [2] | 769 (+2.0)  65.6 (+6.4) 18.9 (+13.8))
DeepLabV2 [3] | 77.8 (+0.6)  65.8 (+3.7) 18.8 (+5.6)
Segmentor [15] 79.9 (+0.6) 69.5 (+5.2) 24.1(+16.7))
Dataset PASCAL B
Method mIoU IA-mIoU IAg
FCN [11] 56.6 (+1.2)  40.3 (+5.0) 10.1 (+5.5)
PSP [20] 63.3 (+0.1) 424 (+4.9) 13.4 (+6.3)
DeepLabV1 [2] | 65.7 (+1.3) 454 (+5.8) 13.3 (+7.1)
DeepLabV2 [3] | 66.6 (+1.3)  46.2 (+3.2) 15.6 (+4.2)
Segmentor [15] | 67.9(—0.2) 459 (+4.9) 13.1 (+7.6)

Table 2. Experimental results of fully-supervised method for PAS-
CAL VOC and PASCAL-B.

to Fig. 16), and PASCAL-B (from Fig. 17 to Fig. 26). Each
figure shows that models with our loss function catch the
objects more clearly including small-sized ones since our
loss aims to constrain the network to be trained in balance
considering the size of instances.
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Figure 4. Visualization of BBAM on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 5. Visualization of BANA on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 6. Visualization of EDAM on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 7. Visualization of NS-ROM on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 8. Visualization of RCA on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 9. Visualization of CLIM on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 10. Visualization of IRN on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 11. Visualization of CDA on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 12. Visualization of AMN on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 13. Visualization of DeepLab V2 on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability
of capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 14. Visualization of DeepLab V2 on MS COCO. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 15. Visualization of IRN on MS COCO. Our loss function successfully fine-tunes baseline model to improve the ability of capturing
objects including small-sized ones which is expressed by red bounding boxes.
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Figure 16. Visualization of RIB on MS COCO. Our loss function successfully fine-tunes baseline model to improve the ability of capturing
objects including small-sized ones which is expressed by red bounding boxes.
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Figure 17. Visualization of BBAM on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 18. Visualization of BANA on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 19. Visualization of EDAM on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 20. Visualization of NS-ROM on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 21. Visualization of RCA on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of capturing
objects including small-sized ones which is expressed by red bounding boxes.
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Figure 22. Visualization of CLIM on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 23. Visualization of IRN on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of capturing
objects including small-sized ones which is expressed by red bounding boxes.

[20] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang pattern recognition, pages 2881-2890, 2017. 4
Wang, and Jiaya Jia. Pyramid scene parsing network. In

Proceedings of the IEEE conference on computer vision and [21] Tianfei Zhou, Meijie Zhang, Fang Zhao, and Jianwu Li.

Regional semantic contrast and aggregation for weakly su-



Image

Ground
Truth

Baseline

Baseline
+0urs

Figure 24. Visualization of CDA on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of capturing
objects including small-sized ones which is expressed by red bounding boxes.
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Figure 25. Visualization of AMN on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 26. Visualization of DeepLab V2 on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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