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1. Supplementary Materials

This document supplements the main paper with the fol-
lowing:

1. Alternative inputs for interactive segmentation. (supple-
ments Section 2)

2. Examples of annotations from our user study. (supple-
ments Section 3)

3. Examples of ground truth region segmentations that
illustrate the diversity supported in our DIG dataset.
(supplements Section 4.1)

4. Expanded discussion of the different gesture types sup-
ported in our DIG dataset. (supplements Section 4.1)

5. Implementation details for creating previous segmenta-
tions for our DIG dataset. (supplements Section 4.1)

6. Characterization of segmentations included in DIG with
respect to the setting of segmentation creation versus
segmentation refinement. (supplements Section 4.2)

7. Expanded discussion of our evaluation metric, RICE.
(supplements Sections 5 and 6)

8. Expanded discussion of models benchmarked on our
DIG dataset. (supplements Section 6)

9. Additional results for benchmarked models. (supple-
ments Section 6)

2. Non-Gesture Segmentation Methods
Other forms of segmentation (e.g., automatic) and in-

teraction (e.g., language) could be used to select a region
in an image. With that said, we discuss here their critical
shortcomings that are not present when utilizing gestures.

For automatic methods [1, 9, 12, 15], they could allow
a user to segment an entire image and then choose their

Select the Wall Select the Window Panes Select the Yellow Sprinkles Select the Cart
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Select the Powerlines

Figure 1. Examples of annotations generated in our user study about gestures. The text below each annotated image is a truncated description
of the task described to the study participants. BG stands for background.
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Figure 2. Scenarios representing the difficulty of using language
instead of gestures: (a) selecting a specific object, (b) specifying
distractors to remove from an image, (c) performing corrections on
a previous segmentation.

selection based off of the set of segmentations. However,
these methods not only lack the ability to infer user intent,
as noted in the main paper, but may be unable to segment
to a user’s desired level of granularity (e.g., a user wants to
segment a petal on a flower but a model may not support part
segmentation). Furthermore, automatic methods lack the
capacity for ongoing adjustments to a segmentation, as they
segment an entire scene in a single operation. Conversely,
the capability for users to iteratively refine segmentation until
satisfaction represents a fundamental aspect of interactive
segmentation. This divergence renders automatic methods
inappropriate for our proposed task.

Language models have had significant impact in many vi-
sion problems such as generation [7,14], and can certainly be
valuable in aiding selection [2, 5, 11, 17]. However, it brings
important limitations. We highlight three key limitations
below.

1. Language models target only a tiny fraction of the
7000+ languages spoken in the world [2], and primar-
ily focus on the most successful nations. Relying only
on language would discriminate against most language
groups, many of which encompass the most disenfran-
chised peoples, at least until vision-language models
achieve the same level of accuracy for all languages
as they have for English. Gestures, in contrast, can
be easily understood and used by those speaking any
language.

2. Many objects/parts/regions are difficult to identify us-
ing language. To illustrate, consider three scenarios:
(a) Describing which objects to manipulate is tricky as
images could have repeated objects (like many oranges
in a fruit stand), and users might want to adjust a subset
of these objects (e.g., the magenta ”X” marked orange
in Figure 2(b)). The intended objects may be difficult
to specify in cluttered scenes. (b) Users might struggle
to articulate the desired changes to an image or region,
like removing distracting color blobs (cyan-encircled
areas) or unwanted elements (green-encircled lens flare)
in Figure 2(b). Simply marking these would be easier

than verbalizing. (c) Correcting errors from a previous
segmentation could be hard to verbalize, whereas ges-
turing at the issue is simple. For instance, refining the
player selection (e.g., removing body parts from other
players) in Figure 2(c) is clearer through gestures than
words.

3. Using language alone could result in an inequitable
experience for disabled users. For example, typing
a sentence to segment a region could result in more
work for users with motor impairments. This lack of
accessibility means that users could be excluded from
participating in or benefiting from interactive segmen-
tation applications that rely solely on language. In
comparison, using the gesture that fits a user’s unique
needs (which is supported under our task) could be
considerably faster and less limiting.

To summarize, while language is a valuable tool for com-
puter vision tasks, it is limited in the scope of interactive
segmentation. As highlighted above, language-based mod-
els are: unable to achieve comparable performance across
different languages, tedious when specifying the potentially
many corrections a segmentation may have, and could lead
to inequitable experiences among users. In contrast, gestures
are: language agnostic, trivial to specify corrections with,
and can be adapted to suite the needs of users with varying
speech, motor, and visual [10] abilities.

3. User Study Annotation Examples

We show examples of the annotations for eight different
tasks in Figure 1. These exemplify the observation in our
main paper that multiple gesture types are used, with lasso
the most popular (e.g., tower, powerlines, large amounts of
text, group of people, car). We also found other gestures
occur – for example, we observed individuals use a combina-
tion of a lasso and scribbles to denote the background behind
a cup, scribbles to select powerlines, and multiple clicks
to select the many sprinkles on a donut. The diversity of
gesture types underscores the need for algorithms to support
multiple gesture types simultaneously.

4. Ground Truth Segmentations of Regions

To exemplify the diversity of types of regions supported
in our paper, we show here examples of ground truths for (1)
non-occluded regions in Figure 3(a), (2) occluded regions
(i.e., parts) in Figure 3(b), and (3) multi-region segmenta-
tions in Figure 3(c). We also exemplify ground truth cor-
rections for a previous segmentation in Figure 4; i.e., each
correction has its own ground truth.
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Figure 3. Examples of ground truth segmentation for multiple
segmentation region types captured in our DIG dataset: (a) object
(i.e., non-occluded object), (b) object part (i.e., occluded object),
and (c) multi-region (i.e., multiple objects).
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Figure 4. Examples of ground truth used for training algorithms for
segmentation refinement. Each correction in an initial segmentation
has a corresponding ground truth. (a) is the initial segmentation
with each correction denoted with a number, (b) is the ground truth
for correction 1, (c) is the ground truth for correction 2, and (d)-(f)
are the ground truths for corrections 3-5.

5. Gesture Types Supported in DIG
5.1. Gesture Implementation Details

For gesture annotations, we wanted a thickness that would
neither be too small (i.e., a single pixel is difficult for a
human to discern where the gesture is) nor too large that
gestures would be indiscernible (e.g., a lasso that looks like
a scribble). We chose as a heuristic a radius of 5 pixels from
the center of each point in a gesture annotation. We used
tools from Scikit-Image [19] and NumPy [8] to create all
markings.

Lasso Generation. We describe here how we sample
points from a region boundary to create both coarse and tight
lassos. To construct lassos, we uniformly sample N points
from the relevant boundary based on the interactive seg-
mentation setting, randomly “jitter” points to simulate user
annotation noise, and then interpolate between the points.
For segmentation creation, the points are sampled from the
ground truth segmentation of the target region. When refin-
ing a segmentation, the points are sampled from an erroneous
region (e.g., the missing leg of the turtle in Figure 1 of the

main paper) such that gestures target a specific region to
correct (i.e., add or subtract pixels). Coarser lassos are simu-
lated by applying a morphological dilation operator to the
boundary. Formally, let L be the set of boundary points
around a region and L′ be the totally ordered set of newly
sampled points. We then model the number of sampled
points as N ∼ U

( |L|
512 ,

|L|
8

)
, where U(·) is a discrete uni-

form distribution over [a, b] with a, b ∈ Z and N = |L′|. In
the case of a degenerate lasso (i.e., all points in L′ are colin-
ear), we resample points up to 10 times. In order to simulate
user noise, we randomly “jitter” a point, p, in L′ before in-
terpolating between points. Formally, p = p + ϵ, ∀p ∈ L′,
where ϵ ∼ U(−J, J) and J is our “jitter” parameter. We use
J = 4 for loose lassos and J = 0 for tight lassos.

Scribble Generation. We describe here how we permit
scribbles to pass outside a region’s boundary as well as how
we simulate smoother curves. First, we create the B-spline
by randomly sampling 4 to 6 (x, y) pairs from a target re-
gion or previous segmentation. Then, to permit scribbles to
pass outside of the target region’s boundaries and to simulate
simpler curves, we perturb the sampled points by indepen-
dently sorting the x and y coordinates before interpolating.
We chose as heuristics to sort the x coordinates with 30%
probability and the y coordinates with 60% probability. This
allows the curves to pass outside of the boundaries of re-
gions as the new (x, y) pairs may not exist within the region.
Moreover, sorted points lead to visually less complex curves.

Rectangle Generation. We describe how we augment per-
fect bounding boxes into diverse rectangles that encapsulate
a region of interest. Given a bounding box, B of the form
[xmin, ymin, xmax, ymax], we augment it as follows:

xmin/max = xmin/max + v · gi · (xmax − xmin) (1)
ymin/max = ymin/max + v · gi · (ymax − ymin) (2)

where the hyper-parameter v controls the variation of the
rectangle and gi ∼ N (0, 1), ∀i ∈ {0, 1, 2, 3}, where i
corresponds to an index (e.g., 0 = ymin) in B. We chose to
randomly set v ∈ [0.10, 0.15]. Since gi can go both positive
and negative, we can “jitter” the rectangle across multiple
directions.

5.2. Gesture Timing

We show the breakdown of how long it takes to generate
each gesture type on average in Table 1. We report the
mean time (± standard deviation) of each gesture type for
approximately 4,740 regions (i.e., a random region from each
image in the DIG validation and test splits). Computations
are performed on an Intel Xeon Platinum 8275CL CPU.
Overall, we observe that scribbles take approximately double
the time of clicks and rectangles while lassos take 5-8 times
longer. This underscores the impracticality of generating
diverse gestures on the fly.



Click Scribble Loose Lasso Tight Lasso Rectangle

Seconds .004± .001 .009± .010 .035± .019 .023± .022 .004± .001

Table 1. Mean time ± standard deviation to generate each gesture
type. We observe a large difference between the slowest gestures
(i.e., lassos) and the quickest (i.e., clicks and rectangles).

5.3. Gesture Examples

We show additional examples of gesture annotations in
Figure 5 to further highlight the diversity of gestures in our
DIG dataset. For example, in the second row of Figure 5,
we observe a nearly perfect circle lasso in (a) followed by
an incomplete lasso in (b). Additionally, in the second row
of Figure 5(c), we observe a scribble going out of the frame
and rejoining (i.e., disconnected), contrasting the simpler
scribble in the top row. Finally, we observe for clicks a
diversity of positions and for rectangles varying amount of
background content contained within the rectangle. The
diversity of gestures present in DIG supports training models
to account for the wide range of possible human interactions.

(b)(a) (c) (d) (e)

Figure 5. Examples of diversity within gesture types. We crop the
image to the desired region to focus on the gesture annotations.
The figure shows (a) loose lassos, (b) tight lassos, (c) scribbles, (d)
clicks, and (e) rectangles.

6. Previous Segmentation Construction
For the construction of previous segmentations, we fol-

low the approach employed by FocalClick [3]. Specifically,
we only retain previous segmentations results that have IoU
scores between 0.75 and 0.85 with a region’s ground truth.
This lower bound is motivated by prior work which shows
that users of interactive segmentation methods tended to

discard previous segmentations when IoU scores fell below
0.75. The upper bound is motivated by click-based seg-
mentation methods which use 0.85 as the target IoU when
evaluating using the NoC metric.

7. DIG Segmentation Setting Characterization
We show the frequency of gesture types for segmentation

creation and refinement in Table 2. For the setting where
no previous segmentation is present, we observe a balanced
number of gesture types with a mean of 5 gestures per region.
When no previous segmentation is present, we are always
adding pixels to a segmentation, thus we observe no gestures
intended for subtraction. For the setting when a previous
segmentation is present, there are 18.96% fewer objects than
when a previous segmentation is not present. A reason for
this is that we disregard all corrections smaller than 100
pixels in areas as those corrections could be unnecessarily
challenging for interactive segmentation methods. We again
observe a balanced number of gesture types with a mean
of 9.1 gestures per region in an image. We observe slightly
more gestures whose intended context is addition as we
include multi-region segmentation scenarios, which always
involve adding pixels.

8. Evaluation Metric: RICE
8.1. RICE Implementation

We define RICE to take into account both the starting IoU
of the previous segmentation and the ground truth, as well as
the IoU of the prediction with the ground truth. Specifically,
let ŷ be the segmentation output of an interactive segmenta-
tion model, g be the ground truth of a region, and m be the
previous segmentation. Additionally, let

IoU(A,B) =
|A ∩B|
|A ∪B|

(3)

be the intersection-over-union for some region A and some
ground truth B. Then, α = IoU(ŷ, g), α ∈ [0, 1] and
β = IoU(m, g), β ∈ [0, 1) given that ŷ ∈ {0, 1}H×W

is the output of an interactive segmentation method, g ∈
{0, 1}H×W is the ground truth for the region of interest,
m ∈ {0, 1}H×W is an initial segmentation to refine. We
only consider initial segmentations with β ∈ [0, 1) for this
metric since β = 1 would be a perfect segmentation with no
available refinements. When creating a segmentation with
no previous segmentation, RICE simplifies to IoU(·).

RICE ranges from a minimum value of -1 to a maximum
value of 1. Intuitively, a positive score means that an al-
gorithm corrected a previous segmentation (i.e., α > β),
and a score of 0 means the algorithm either did not change
the previous segmentation or that the algorithm produced a
similar result to the previous segmentation (i.e., α = β). A



previous segmentation # Filtered Regions # Clicks # Scribbles # LL # TL # Rectangles # Subtractions # Additions Mean # Gestures per Region

✗ 1,091,467 1,091,467 1,091,467 1,082,165 1,085,329 1,091,467 0 5,411,894 4.98
✓ 884,551 1,611,618 1,611,618 1,611,506 1,611,578 1,611,618 4,009,524 4,048,382 9.1

Table 2. Analysis of the interactive segmentation settings of segmentation creation (i.e., create segmentation from scratch) and segmentation
refinement (i.e., refine a given segmentation) with respect to the frequency of different gesture types and modes. The larger number of
samples for segmentation refinement stems from having multiple errors in previous segmentations needing correction. (LL = loose lasso, TL
= tight lasso)

negative score means that the algorithm damaged the pre-
vious segmentation (i.e., α < β). This contrasts previous
metrics that only range from 0 to 1 and do not quantify if an
algorithm degrades an initial segmentation.
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Figure 6. Visualization of the level set of RICE with fixed β values.
As β increases so does the slope of RICE.

When examining Figure 6, it is clear that the slope of
RICE changes depending on β. Formally, we calculate the
rate of change as:

∂

∂α
RICE(α, β) =

{
1

1−β , if α ≥ β
1
β , else

(4)

First, we observe that as β goes to 1, then the slope of RICE
trends towards ∞ when α ≥ β. When β goes to 0, the slope
of RICE also trends to ∞ when α < β. Then let, |α−β| = δ.
When β is large, then a small δ will lead to a higher RICE
score than a small δ with a low β.

To support intuitively understanding this metric, we visu-
alize the level set of RICE in two dimensions with multiple
fixed β. Results are shown in Figure 6 with differing colors
representing RICE at a fixed β. Of note, when the func-
tions cross the x-axis, α = β and RICE(α, β) = 0. As β
increases, the slope of RICE increases, meaning a small δ
will have a larger effect. To put this concept concretely, let
β1 = 0.20, β2 = 0.90, α1 = 0.21, and α2 = 0.91 such that
|α1 − β1| = |α2 − β2| = δ. Then, RICE(α1, β1) = 0.002
and RICE(α2, β2) = 0.10. RICE appropriates takes into
account that a small change to a relatively good previous
segmentation (i.e., β2) should signify better algorithm perfor-
mance than a small change to a poor previous segmentation
(i.e., β1). Intuitively, positive changes to a relatively good
previous segmentation would be more difficult (i.e., smaller
areas to correct) than positive changes to a relatively poor
previous segmentation.

8.2. Local Ground Truth for Evaluation

Let gr ∈ {0, 1}H×W be the entire ground truth of a given
region, ga ∈ {0, 1, 255}H×W be the augmented ground
truth from Section 9.3, m ∈ {0, 1}H×W be a previous seg-
mentation, and gv ∈ {0, 1}H×W be ga with all void pixels
set to 0 when creating a segmentation. In this formulation,
we define void pixels as regions in an image that do not con-
tribute to the loss when training a model or the evaluation
when evaluating a model for model selection. Details about
which pixels get labeled “void” are provided in Section 9.3.
To isolate intended parts of regions for local evaluation, we
remove the void pixels for both segmentation creation and
segmentation refinement. When refining a segmentation, the
void pixels are set to 1 if they are an erroneous region or 0
if they are a missing region. We compute the ground truth
used for local evaluation (i.e., RICElocal), gl, as:

gl = (gr ·m) + gv (5)

where · denotes element-wise multiplication. We clip the val-
ues of gl to be in {0, 1}. We show comparisons of gl and gv
in Figure 7 for both segmentation creation and segmentation
refinement.

9. Expanded Benchmarking Discussion
9.1. Architecture Details for HRNet-dataAug

For this proposed model, we exclude the post-processing
module because it was designed to take in multiple clicks to
locate an area intended for modification and then generate
a cropped area, which could result in partially excluding
the gesture and so valuable information; e.g., given that a
lasso surrounds the region of interest, a crop may either not
include the lasso at all, or contain parts of a region that a
user does not wish to change.

9.2. Architecture Details for Proposed Multi-Task
Models

To extend HRNet-base to predict the intended context
of a gesture in addition to the gesture type, we add in two
MLPs after the encoder of HRNet [20]. Specifically, after
the encoder, we reduce the feature size with a 1x1 convolu-
tion from 96 dimensions to 48 and reduce the spatial size
from 128 to 32 with a max pooling operation. We then use
two separate 3-layer MLPs to output a binary classification
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Figure 7. Examples of ground truths used for training (i.e., ga) in a and d. These ground truths allow for the inclusion of void pixels.
Examples of ground truths used for local evaluation (i.e., gl) are shown in b and e, these ground truths remove void pixels for evaluation. We
show an example of a previous segmentation in (c).

for the intended context and a 5-class classification for the
gesture type. For the intended context, the MLPs go from
a dimension of 49,152 to 1024, then 1024 to 512, then 512
to 1 (i.e., add or subtract pixels) with ReLU [6] activations
between linear layers. The MLP for the gesture type follows
the same architecture as the MLP for context but with an
output size of 5 (i.e., one class for each gesture type). We
also tested a variant that combines multi-task learning (i.e.,
HRNet-multiHead) with multi-region data augmentation (i.e.,
HRNet-dataAug). We follow the same training procedure as
HRNet-multiHead while employing the data augmentation
described for HRNet-dataAug.

9.3. Data Augmentation and Training Details for
Proposed Models

We train all variants on our DIG dataset for 15 epochs
using the AdamW [16] optimizer with a learning rate of
3e−4 and batch size of 32, resize all inputs to 512×512, use
a value of 0.5 for non-maximal suppression, and initialize
the weights using those publicly available for HRNet [20]
pretrained on ImageNet [4]. For data augmentation, as de-
scribed in Section 8.2, we define void pixels as regions that
do not contribute to the loss when training a network and
are ignored when evaluating models for model selection. To
encourage algorithms to respond locally to user interactions,
we make use of void pixels in the ground truth of our re-
gions when applicable. For example, given that we target
parts of regions when creating a segmentation, we set the re-
maining connected components within a region as void. We
exemplify this in Figure 3(b). Similarly, when performing
refinements, we consider a specific correction targeted by
an interaction as ground truth (i.e., add or subtract pixels)
in addition to any part of the region that is not corrupted.
We use a value of 255 to represent void pixels. We show an

example of this for an initial segmentation in Figure 4.

9.4. Input Augmentation

Due to existing methods only training with a small num-
ber of points (e.g., at most 24 [3]), they are not designed to
handle the larger number of points available in some of our
gesture annotations. Therefore, when applicable, we reduce
the number of points in all annotations using skeletoniza-
tion [24].

10. Additional Benchmarking Results
10.1. Deep GrabCut and IOG Results

We show results for both algorithms in Table 6. When an-
alyzing IOG [23] and Deep GrabCut [21]), a plausible expla-
nation for their worse performance is that those techniques
used restrictive settings. Deep GrabCut’s training process
relied solely on single bounding boxes without any provi-
sion for refinement, which may have restricted the model’s
capability to learn general regions. Moreover, this may have
limited its suitability for complex real-world settings involv-
ing small regions, multiple regions or intricate boundaries.
Similarly, IOG’s reliance on a unique combination of ges-
tures, specifically bounding box and center click, may not
be universally generalizable to each gesture independently,
potentially limiting its practical applicability.

10.2. Analysis for Multi-Region Segmentation

For this task, we collect one previous segmentation region
and then apply a gesture on a second disconnected region
in the image to reference the second, disconnected object
we also want to segment. For ground truth, both the dis-
connected and the target regions of interest are needed to
evaluate this set-up of multiple regions. We show results



Average Click Scribble Loose Lasso Tight Lasso Rectangle

Method RICElocal RICEglobal RICElocal RICEglobal RICElocal RICEglobal RICElocal RICEglobal RICElocal RICEglobal RICElocal RICEglobal

M
ul

ti-
R

eg
io

n

RITM [18] - positive -5.81 -5.78 28.86 28.67 22.57 21.89 -57.40 -56.89 0.82 0.78 -23.91 -23.35
RITM [18] - negative -5.70 -5.54 -9.02 -8.72 -9.51 -9.24 -11.23 -11.02 -2.83 -2.75 4.09 4.05
RITM [18] - random -5.88 -5.78 9.71 9.75 6.31 6.10 -34.31 -33.93 -1.02 -0.99 -10.08 -9.82

FocalClick [3] - positive -16.44 -16.27 23.06 23.12 15.95 15.53 -69.75 -69.26 -16.44 -16.23 -35.05 -34.49
FocalClick [3] - negative -15.25 -14.81 -14.58 -14.08 -16.02 -15.51 -17.41 -17.16 -15.98 -15.41 -12.27 -11.91
FocalClick [3] - random -16.01 -15.70 4.09 4.39 -0.06 -0.04 -43.60 -43.23 -16.57 -16.18 -23.90 -23.43

SAM [13]-R - positive -22.07 -21.84 -12.92 -11.16 -30.05 -30.40 -38.39 -38.15 -14.86 -14.97 -14.12 -14.52
SAM [13]-R - negative -37.88 -37.91 -91.99 -91.49 -30.05 -30.40 -38.39 -38.15 -14.86 -14.97 -14.12 -14.52
SAM [13]-R - random -29.75 -29.65 -51.33 -50.19 -30.05 -30.40 -38.39 -38.15 -14.86 -14.97 -14.12 -14.52

SAM [13]-C - positive -41.14 -39.93 -12.92 -11.16 -43.28 -41.70 -73.89 -72.71 -61.49 -59.56 -14.14 -14.53
SAM [13]-C - negative -67.30 -66.90 -91.99 -91.49 -86.74 -86.37 -73.21 -72.43 -70.44 -69.71 -14.14 -14.54
SAM [13]-C - random -54.16 -53.35 -51.81 -50.66 -64.96 -63.96 -73.79 -72.82 -66.10 -64.75 -14.14 -14.54

HRNet-base -26.25 -46.33 -65.48 -64.95 -60.05 -60.09 -47.85 -47.75 -17.25 -18.17 -40.63 -40.68
HRNet-dataAug 28.57 27.58 -2.99 -3.00 24.26 23.36 36.91 36.08 53.34 50.92 31.31 30.52

HRNet-multiHead -54.16 -54.32 -72.32 -72.19 -60.00 -60.01 -57.23 -57.37 -29.61 -30.36 -51.66 -51.68
HRNet-multiHeadAug 23.25 22.33 5.53 5.24 20.73 19.95 23.6 23.08 54.16 51.55 12.22 11.81

Table 3. Results on the test set of DIG for multi-region segmentation.

for multi-region segmentation in Table 3. Overall, we ob-
serve similar trends as single and multi-region segmentation
with HRNet-dataAug performing the best across the major-
ity of gesture types and single-region methods struggling
to support multiple gesture types. We observe that single-
gesture methods capable of refinement (i.e., FocalClick [3]
and RITM [18]) perform better when using clicks, likely
due to the unfair advantage we provided such methods in
knowing the context of the interaction (i.e., include versus
exclude annotated region). Additionally, we observe that HR-
Net [20] with multiple classification heads and multi-region
data augmentation performs the second best, further showing
the efficacy of the proposed data augmentation. Finally, we
observe that our other models without data augmentation
(i.e., HRNet-base and HRNet-head) perform the worst, likely
due to having neither the context of the interaction nor the
multi-region setting included in training.

10.3. IoU for Segmentation Refinement

We show the IoU for each method capable of segmenta-
tion refinement (i.e., all methods except IOG [23] and Deep
GrabCut [21]) in Table 4. We exclude single region results
as RICE simplifies to IOU when no previous segmentation
is present. Overall, we observe significantly higher scores
for IoU than the corresponding RICE scores in the main
paper. This demonstrates why IoU may be misleading as an
evaluation metric. For example, an algorithm may receive
a high IoU score despite not improving the segmentation
but rather because the previous segmentation initially had a
high IoU with the region ground truth. On the other hand,
RICE provides a more accurate assessment by taking into
account if an algorithm improved or damaged a previous
segmentation.

10.4. Results for FocalClick with Post-Processing
Module

We tested FocalClick [3] with the inclusion of their pro-
posed post-processing module when performing refinements
with clicks. Overall, we observe a RICElocal score of -72.52
and a RICEglobal score of -71.13. One plausible explanation
for the comparatively lower score may lie in the module’s
objectives of refining probabilities. Given that our previ-
ous segmentations are binary, it is possible that the module
cannot fully exploit the probabilistic information, thereby
contributing to the observed outcome. For the NoG setting,
we reintroduce this module as this setting allows for multiple
sequential interactions.

10.5. Results for HRNet Multi-Task Variants

We show results for HRNet-mutliHead and HRNet-
multiHeadAug in Table 6. Overall, we observe a small boost
in performance when performing local refinements (i.e.,
RICElocal) over HRNet-dataAug (2.51 percentage points),
but worse performance across all other metrics. We also
observe that HRNet-multiHead has slightly improved per-
formance over HRNet-base for segmentation refinement,
illustrating that the additional tasks of gesture and context
classification (in HRNet-multiHead) play a role in helping
the algorithm infer the intention of a user when no context
is available. Despite these algorithms achieving top (refine-
ment) or near-top (creation) performance, there still remains
room for improvement. This indicates that our proposed
dataset challenge presents a challenging, open problem for
the research community.

10.6. NoG Evaluation

For backwards compatibility in evaluation, we examine
how long an algorithm takes to reach a sufficient quality, if
at all. We examine the NoG metric, as described in the main
paper, for IoU thresholds of 80, 85, and 90. In line with
previous research [3, 18, 23], we also report the number of



Average Click Scribble Loose Lasso Tight Lasso Rectangle

Method IoUlocal IoUglobal IoUlocal IoUglobal IoUlocal IoUglobal IoUlocal IoUglobal IoUlocal IoUglobal IoUlocal IoUglobal

R
efi

ne
m

en
t

RITM [18] - positive 70.71 67.36 82.62 79.76 81.21 77.96 51.52 48.13 66.04 62.57 72.16 68.40
RITM [18] - negative 73.32 70.51 83.74 80.55 81.32 78.29 66.46 64.12 68.10 65.39 67.00 64.20
RITM [18] - random 72.00 68.92 83.16 80.14 81.26 78.12 59.12 56.24 66.97 63.89 69.50 66.24

FocalClick [3] - positive 62.73 62.68 73.09 73.38 74.18 74.32 40.58 40.23 60.54 60.44 65.24 65.04
FocalClick [3] - negative 65.50 65.62 77.90 78.20 73.38 73.60 55.77 55.68 61.31 61.41 59.17 59.20
FocalClick [3] - random 64.08 64.10 75.53 75.83 73.75 73.90 48.03 47.77 60.95 60.95 62.16 62.05

SAM [13]-R - positive 20.03 20.89 38.49 41.45 6.63 6.69 25.60 26.40 18.87 19.25 10.58 10.69
SAM [13]-R - negative 13.29 13.59 4.78 4.94 6.63 6.69 25.60 26.40 18.87 19.25 10.58 10.69
SAM [13]-R - random 16.94 17.54 23.01 24.66 6.63 6.69 25.60 26.40 18.87 19.25 10.58 10.69

SAM [13]-C - positive 23.89 25.39 41.01 44.08 33.07 35.24 14.79 15.60 20.07 21.41 10.49 10.59
SAM [13]-C - negative 8.35 8.56 4.78 4.94 6.94 7.24 10.11 10.32 9.45 9.73 10.49 10.59
SAM [13]-C - random 16.12 16.98 22.92 24.58 19.87 21.12 12.57 13.08 14.72 15.53 10.49 10.59

HRNet-base 89.03 93.84 89.23 93.59 89.08 93.9 88.97 93.11 89.35 94.54 88.51 94.07
HRNet-dataAug 90.41 94.07 90.57 93.91 90.38 94.18 90.57 93.59 90.59 94.60 89.92 94.06

HRNet-multiHead 89.58 94.19 89.79 94.05 89.74 94.25 89.61 93.55 89.76 94.85 89.01 94.27
HRNet-multiHeadAug 88.97 94.47 89.33 94.42 89.08 94.56 88.77 93.52 89.32 95.24 88.33 94.63

Table 4. IoU results on the test set of DIG for segmentation refinement.

instances where an algorithm fails to achieve the specified
IoU within 20 interactions. For every interaction we follow
previous work [3,18,22] by always targeting the largest error.
We analyze algorithms capable of refinement both settings
of starting from segmentation creation and starting from
an imperfect superpixel mask supplied by DAVIS585 [3].
For the proposed models, we analyze the performance with
respect to each gesture type supplied during training, as well
as the setting of starting with a tight lasso and having each
subsequent interaction be a click (i.e., mixed). We omit
SAM-R and SAM-C for this experiment and just consider
SAM [13] out of the box. We adopt this modification as
clicks are the only supported gesture capable of indicating
content to not include in the final segmentation.

Results are shown in table 5. As noted in the main paper,
algorithms that require context exhibit more failures than our
proposed context-free models when refining a previous seg-
mentation, while also requiring more interactions on average
to achieve a specified IoU.

Analysis with Respect to Context Augmentation. Aug-
menting context for existing algorithms yields flipped results
for the settings of segmentation creation and refinement. For
example, FocalClick [3] and RITM [18] observe the best
results (outside of knowing the context) when always assum-
ing the interaction is positive during segmentation creation.
Conversely, these methods yield the best results during re-
finement when assuming the input context is negative. A
potential rationale for this observation is that these models
may be adept at adding content with minimal ‘cruft’, lead-
ing to better results with positive context. For refinement,
77.44% of DAVIS585 [3] samples contain a false positive,
while RITM and FocalClick fail at reaching a sufficient IoU
22.39% to 64.79% of the time when assuming the context is
negative, indicating that resolivng the false negatives is suffi-

cient to reach a lower IoU (i.e., 80%) but fails as the desired
quality of the segmentation increases. For SAM [13], we
observe consistent results with positive context performing
the best in both scenarios. This can be partially attributed
to SAM exploiting click history as mentioned in the main
paper. Across all methods that take in context, we observe
that random context exhibits the worst performance in the
number of gestures to reach a specific IoU, while also failing
the most. This observation may be attributed to the context
being selected as the opposite choice of what is desired (i.e.,
removal when the interaction should be addition) as well as
potentially undoing any progress made.

10.7. Qualitative Results

We show qualitative results for segmentation creation
when the entire region is the target in Figure 8, segmenta-
tion creation when the region part is the target in Figure 9,
segmentation refinement in Figure 10, and multi-region seg-
mentation in Figure 11.

In the context of creating segmentations where the tar-
get region encompasses the entire area (Figure 8), all of the
proposed multiple-gesture variants demonstrate an inclina-
tion towards selecting an object region when provided with
minimal guidance in the form of clicks and scribbles. This
tendency may be attributed to the presence of void pixels
in the training data, which aids in the development of al-
gorithms that respond to local interactions as opposed to
learning to identify the entirety of the region. Conversely,
when the same degree of guidance is provided, techniques
that employ a single gesture exhibit a proclivity towards se-
lecting the entirety of the region. For the SAM [13] variants,
we observe a bias of selecting the entire player for all gesture
types aside from scribbles. A potential reason for this is that
for consistent evaluation, we always pick the output mask
with the highest IoU with the ground truth.



Creation Refinement

Method NoG@80 NoG@85 NoG@90 NoF@80 NoF@85 NoF@90 NoG@80 NoG@85 NoG@90 NoF@80 NoF@85 NoF@90

FocalClick [3] - positive 10.15 11.87 14.45 273 325 405 9.07 10.76 12.95 242 295 364
FocalClick [3] - negative - - - 585 585 585 7.95 9.75 12.58 209 266 353
FocalClick [3] - random 13.31 14.83 16.67 353 404 469 7.80 8.98 11.48 198 236 312
RITM [18] - positive 8.00 9.77 12.89 197 251 352 6.74 10.26 13.64 166 274 379
RITM [18] - negative - - - 585 585 585 5.52 9.39 13.83 131 241 379
RITM [18] - random 13.62 14.83 16.35 378 416 466 14.90 16.07 17.32 408 451 495
SAM [13] - positive 1.69 1.79 1.99 88 114 181 1.78 1.84 2.01 286 311 350
SAM [13] - negative - - - 585 585 585 - - - 585 585 585
SAM [13] - random 5.82 6.31 6.33 129 172 269 5.78 6.06 6.24 157 200 290
HRNet-base - clicks 7.29 7.08 6.66 329 434 526 1.09 1.14 1.53 45 73 114
HRNet-base - scribbles 5.23 6.06 7.23 362 431 511 4.12 4.62 4.92 205 284 395
HRNet-base - loose lassos 1.96 2.41 2.45 225 329 453 3.51 3.89 4.08 362 421 489
HRNet-base- tight lassos 1.28 1.30 1.40 85 122 195 4.30 5.05 6.26 130 203 331
HRNet-base - rectangles 2.85 3.43 4.35 457 499 553 2.05 2.15 2.46 407 445 492
HRNet-base - mixed 1.30 1.23 1.30 108 144 223 8.18 9.70 11.01 272 409 530
HRNet-dataAug - clicks 6.99 7.26 7.40 202 309 456 1.06 1.17 1.42 36 50 88
HRNet-dataAug - scribbles 5.52 6.20 6.69 239 333 454 2.58 3.20 3.89 94 164 266
HRNet-dataAug - loose lassos 2.04 2.38 2.42 182 273 399 2.06 2.44 2.78 119 186 298
HRNet-dataAug - tight lassos 1.30 1.32 1.34 69 109 177 3.36 4.22 5.33 99 178 283
HRNet-dataAug - rectangles 3.80 3.94 4.12 350 420 493 1.72 2.09 2.44 107 175 271
HRNet-dataAug - mixed 1.40 1.44 1.29 88 122 195 2.76 3.87 5.23 72 150 340
HRNet-multiHead - clicks 9.82 10.93 13.16 248 347 491 1.05 1.12 1.47 38 55 89
HRNet-multiHead - scribbles 7.82 8.53 10.03 261 356 463 2.97 3.47 3.90 141 222 333
HRNet-multiHead- loose lassos 3.49 3.89 3.99 251 347 459 3.67 4.07 4.05 237 311 427
HRNet-multiHead - tight lassos 1.34 1.38 1.62 78 110 187 2.87 3.08 3.70 145 243 345
HRNet-multiHead - rectangles 5.44 6.50 8.09 430 490 546 2.60 2.71 2.83 242 318 398
HRNet-multiHead - mixed 1.51 1.69 1.66 89 128 208 10.15 10.84 11.34 224 325 464
HRNet-multiHeadAug - clicks 10.17 11.47 13.82 236 332 481 1.05 1.12 1.47 38 55 89
HRNet-multiHeadAug - scribbles 7.23 8.76 10.64 266 351 459 3.19 3.77 3.96 130 213 328
HRNet-multiHeadAug - loose lassos 3.64 3.83 4.05 255 350 455 3.62 4.13 4.30 239 318 425
HRNet-multiHeadAug - tight lassos 1.36 1.37 1.70 78 110 185 2.92 3.24 4.15 139 248 338
HRNet-multiHeadAug - rectangles 5.64 6.85 8.11 442 486 538 2.82 2.99 3.16 249 305 397
HRNet-multiHeadAug - mixed 1.55 1.71 1.66 93 130 204 10.39 11.10 12.44 216 315 451

Table 5. Algorithmic benchmarking results on DAVIS585 [3]. We report the number of gestures to reach a given IoU as well as the number
of failures. Best results for each method are in bold.

Average Click Scribble Loose Lasso Tight Lasso Rectangle

Method RICElocal RICEglobal RICElocal RICEglobal RICElocal RICEglobal RICElocal RICEglobal RICElocal RICEglobal RICElocal RICEglobal

GrabCut [21] 10.23 10.60 16.21 16.51 11.66 12.09 6.16 6.48 9.01 9.49 8.13 8.44
IOG [23] 13.68 13.64 23.72 23.12 19.12 19.05 3.59 3.73 12.68 12.89 9.29 9.40

HRNet-multiHead 63.84 61.28 55.20 52.32 57.22 54.70 66.48 64.89 81.93 78.16 58.37 56.34
HRNet-multiHeadAug 58.85 56.46 48.91 46.26 53.87 51.48 60.63 59.19 78.96 75.29 51.86 50.07

HRNet-multiHead 38.55 45.86 36.39 46.68 37.84 46.46 38.20 46.38 42.43 46.53 37.90 43.24
HRNet-multiHeadAug 41.06 43.61 38.90 44.49 40.35 43.36 39.33 43.20 45.54 44.41 41.20 40.38

Table 6. Results on the test set of DIG. Above the dashed line represents segmentation creation, and below represents segmentation
refinement.

Regarding the task of segmentation creation where the
target region is a part of a region, the majority of methods
tend to appropriately select the upper half of the surfer, ex-
cept for Deep GrabCut [21], which includes the majority
of the surfer as well as the board in Figure 9. As multiple-
gesture methods receive more refined guidance (e.g., lassos,
rectangles), they tend to select a larger portion of the target
region, thus improving the segmentation accuracy. On the
other hand, the performance of single-gesture methods is
suboptimal when utilizing gestures other than clicks.

In the context of segmentation refinement, our findings
suggest that the multiple-gesture variants exhibit better
performance in filling the missing region of the elephant
while leaving other corrections relatively untouched. Con-
versely, single-gesture methods are observed to be ineffec-
tive in addressing the region of interest, as evidenced by

FocalClick [3] filling in missing content on the ear of the
elephant in the second row of Figure 10(b), instead of the
intended target region on the body. Moreover, all SAM [13]
variants fill in the majority of corrections. We also note that
single-gesture methods tend to degrade the segmentation
rather than improve it when utilizing gestures other than
clicks, as illustrated by the results in the first and second
rows of Figure 10(d).

In the realm of multi-region segmentation, our obser-
vations suggest that single-gesture methods methods that
are provided with contextual information or trained using
multi-region augmentation techniques (i.e., HRNet-dataAug,
HRNet-multiHeadAug) exhibit a superior ability to maintain
the previous segmentation, which is a disjoint region, while
accurately segmenting a new region of interest. We observe
different fail cases for the remaining methods (i.e., HRNet-



base, HRNet-multiHead, SAM [13] variants). For example,
the SAM [13] variants segment only the cat while ignoring
the previously segmented region.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 8. Qualitative results for each gesture type for segmentation creation for all methods when the target is the entire region. From top to
bottom: click, scribble, loose lasso, tight lasso, rectangle. (a) input image with region ground truth overlayed, (b) HRNet-multiHeadAug, (c)
HRNet-multiHead, (d) HRNet-dataAug, (e) HRNet-base, (f) SAM [13]-R - positive, (g) SAM [13]-C - positive, (h) FocalClick [3] - positive,
(i) RITM [18] - positive, (j) IOG [23], (k) Deep GrabCut [21].



(a) (c) (d) (e) (f) (g) (h) (i) (j)(b) (k) (l)

Figure 9. Qualitative results for each gesture type for segmentation creation for all methods when the target is a region part. From top to
bottom: click, scribble, loose lasso, tight lasso, rectangle. (a) input image with region ground truth overlayed, (b) input with with region part
ground truth overlayed (c) HRNet-multiHeadAug, (d) HRNet-multiHead, (e) HRNet-dataAug, (f) HRNet-base, (g) SAM [13]-R - positive, (h)
SAM [13]-C - positive, (i) FocalClick [3] - positive, (j) RITM [18] - positive, (k) IOG [23], (l) Deep GrabCut [21].

(h)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 10. Qualitative results for each gesture type on DIG for segmentation refinement. (a) input image with previous segmentation
overlayed, (b) input with with region ground truth overlayed (c) HRNet-multiHeadAug, (d) HRNet-multiHead, (e) HRNet-dataAug, (f)
HRNet-base, (g) SAM [13]-R - positive, (h) SAM [13]-C - positive, (i) FocalClick [3] - positive, (j) RITM [18] - positive.



(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 11. Qualitative results for each gesture type on DIG for multi-region segmentation. (a) input with with previous segmentation
overlayed (b) HRNet-multiHeadAug, (c) HRNet-multiHead, (d) HRNet-dataAug, (e) HRNet-base, (f) SAM [13]-R - positive, (g) SAM [13]-C
- positive, (h) FocalClick [3] - positive, (i) RITM [18] - positive, (j) IOG [23], (k) Deep GrabCut [21].
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Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.
Array programming with NumPy. Nature, 585(7825):357–
362, Sept. 2020.

[9] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017.

[10] Shaun K Kane, Jacob O Wobbrock, and Richard E Ladner.
Usable gestures for blind people: understanding preference
and performance. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 413–422,
2011.

[11] Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and
Tamara Berg. Referitgame: Referring to objects in pho-
tographs of natural scenes. In Proceedings of the 2014 con-
ference on empirical methods in natural language processing
(EMNLP), pages 787–798, 2014.

[12] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten
Rother, and Piotr Dollár. Panoptic segmentation. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9404–9413, 2019.

[13] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. arXiv preprint arXiv:2304.02643, 2023.

[14] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. 2023.

[15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440, 2015.

[16] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017.
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