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In this Supplementary Material, we provide the following details omitted in the main text:

– Section 1: Mathematical Formulation of SEMA

– Section 2: Generating Pseudo-labels

– Section 3: Qualitative analysis of the UTE and Epic Kitchens datasets

– Section 4: Confusion Matrix

– Section 5: Attention Matrix Visualization

– Section 6: Details of Epic Kitchens Dataset

– Section 7: Annotation Procedure

– Section 8: Evaluation Metrics

– Section 9: Hardware Requirements

1. Mathematical Formulation of SEMA
Transformer network [11] proposed the self-attention to model the global dependencies in long sequences. Once the

input sequence X of length N is linearly projected as query Q = {qi | qi ∈ Rm, i ∈ [N ]}, key K = {ki | ki ∈ Rm, i ∈
[N ]}, and value V = {vi | vi ∈ Rm, i ∈ [N ]}, where m is the query, key, and value dimensions, then the self-attention
mechanism is given as follows:

Att(Q,K,V) = AN×NVN×m, AN×N = softmax

(
QN×mKT

N×m√
m

)
, (1)

Here A ∈ RN×N is the attention matrix and the element (i, j) is the dot product of the row i of Q, with row j of K. We can
equivalently denote it as A(i, j) = κ(qi,kj), where κ : Rm × Rm → R+ is the kernel function.

The above style of learning an attention matrix is not scalable for extremely long egocentric lifelogs due to quadratic
complexity with respect to number of samples, N , and the feature dimension, m. Kernel approximation is a powerful
technique to make kernel methods scalable by projecting the input features into a new space where dot products approximate
the kernel well. Formally, given a kernel κ, kernel approximation methods seek to find a nonlinear transformation φ : Rm →
Rk, for any qi, kj ∈ Rm

κ(qi,kj) = φ(q>i )φ(kj). (2)
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1.1. Mathematical Results

We first prove the following two mathematical results before using them in our formulation.

Lemma 1. For a random vector w ∈ Rm sampled from a Gaussian distribution with zero mean and identity covariance
matrix (Im), and vectors x, y ∈ Rm, we have:

exp

(
‖x+ y‖2

2

)
= Ew∼N (0,Im)exp(wT (x+ y)) (3)

Proof.

exp
(
‖x+ y‖2

2

)
= exp

(
‖x+ y‖2

2

)
· 1 (4)

= exp

(
‖x+ y‖2

2

)
1

(2π)m/2

∫
exp

(
−‖w − (x+ y)‖2

2

)
dw (5)

Since w is a Gaussian distributed vector in Rm with zero mean and identity covariance matrix, the second term represents
the total probability and hence should be 1.

exp
(
‖x+ y‖2

2

)
= exp

(
‖x+ y‖2

2

)
(2π)−m/2

∫
exp

(
−‖w − (x+ y)‖2

2

)
dw (6)

= (2π)−m/2

∫
exp

(
‖x+ y‖2 − ‖w − (x+ y)‖2

2

)
dw (7)

= (2π)−m/2

∫
exp

(
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2

)
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= (2π)−m/2
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(
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2
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dw (9)

= (2π)−m/2

∫
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(
−‖w‖2

2

)
exp(wT (x+ y))dw (10)

= Ew∼N (0,Im)exp(wT (x+ y)) (11)

Hence proved.

Lemma 2. For x, y ∈ Rm, we have: exp(xT y) = κ(x, y) = φ(x)φ(y), where:

φ(x) = Ew∼N (0,Im)

[
exp
(
− ‖x‖

2

2

)
exp(wTx)

]
, (12)

φ(y) = Ew∼N (0,Im)

[
exp
(
− ‖y‖

2

2

)
exp(wT y)

]
, (13)

and w is a Gaussian distributed vector in Rm with zero mean and identity covariance matrix (Im).

Proof.

exp(xT y) = exp

(
1

2
(−xTx− yT y + xTx+ yT y + xT y + yTx)

)
(14)

= exp
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1

2
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)
(15)

= exp
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(16)
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)
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Using Lemma 1 to replace second term in the R.H.S.

= exp

(
−‖x‖2 − ‖y‖2

2

)
Ew∼N (0,Id)exp(wT (x+ y)) (18)

= Ew∼N (0,Im)

[
exp
(
wTx− ‖x‖

2

2)
exp
(
wT y − ‖y‖

2

2)]
(19)

= φ(x)φ(y) (20)

where φ(x) and φ(y) are as given by Equations 12 and 13 respectively. Hence proved.

1.2. Softmax Kernel Approximation using Semantic Kernel

We can use Lemma 2 to write the the attention matrix A as softmax-kernel as follows:

A(x, y) = exp(x>y) = κ(x, y) = φ(x)φ(y), (21)

where we have ignored the scaling factor of softmax. We have also ignored
√
m-normalization which can be equivalently

done by normalizing query and key matrices accordingly.
Instead of fixed random Fourier feature transform using random vector w as proposed in [2,3,8] to approximate the kernel

κ(x, y), we use representative frames (R). The proposed semantic kernel (φsem) defined as below projects the data into a
semantically meaningful space:

φsem(x) =
∑
Ri∈R

exp
(
− ‖x‖

2

2

)
exp(RT

i x), (22)

where Q
iid∼ D (a standard normalized input distribution) and R ∈ Rk×m, R ⊂ Q. Here, we pretend that the feature vectors

of representative frames are sampled from zero mean, unit covariance Gaussian. Intuitively, the semantic kernel reduces the
rank of attention matrix from N to k by projecting into the sapce of representative frames.

Now we compute Q′ = φsem(Q) and K′ = φsem(K), where Q′,K′> ∈ RN×k are the factorization of attention matrix
A and exp is applied element-wise. With this kernel trick, we can change the order of multiplication of query Q′, key K′ and
value vectors V.

Âttsem(Q,K,V) = Q′(K′.V) (23)

This multiplication is characterized by the time complexity of O(Nkm) and space complexity of O(Nk + Nm + km)
compared to O(N2 +Nm) and O(N2m) of the self-attention [11] and allows us to scale it to long egocentric sequences.

2. Generating Pseudo-labels
For clustering, we use the core-set algorithm [9] to generate c-medoid indices using the latest embeddings generated from

SEMAFormer for each sample. The core-set algorithm is an efficient approximation of the k-center problem [9]. These
medoids are aligned/matched to the previously generated medoids, and medoids memory (comprises indices of medoids) is
updated. Once the medoids memory is updated, the pseudo labels (ỹ) are generated with the current embedding and the latest
medoids. To initialize the medoids memory, we apply the core-set for input features.

3. Qualitative analysis of UTE and Epic Kitchens datasets
Similar to Fig. 2 in the main section, we also visualize the results obtained by SEMA for the Epic Kitchens and ‘P04’

sequence of UTE datasets in Fig. 1 and Fig. 2, respectively. Kindly refer to the figures for details.

4. Confusion Matrix
The confusion matrix in Fig. 3 validates the efficacy of the proposed framework and demonstrates that inter-class confusion

is marginal for most of the activity patterns. However, due to high visual similarity, we perform poorly in a few classes. For
example, ‘Food at round table’ confuses with ‘walking in lab and chitchatting’ because the two activities are adjacent and
often confuses at boundaries, and ‘in the classroom’ confuses with ‘walking in lab and chitchatting.’



Appliances Cleaning Crockery Drinks Furniture     Meat Vegetables

Figure 1. The figure demonstrates the visualization of a comparison between the predicted class and ground truth for Epic Kitchens dataset
(for better visualization, we have divided the long sequence into 2000 frames for each row). The SEMA performs reasonably well even
though most category classes overlap in the Epic Kitchens sequence. The ‘appliances’, ‘crockery’, ‘furniture’, and ‘meat’ categories
show marginal misclassification. At the same time, ‘cleaning’ and ‘drinks’ shows huge misclassification due to high overlap with other
categories. ‘Cleaning’ is misclassified into ‘crockery’ or ‘Furniture’, and ‘drinks’ is misclassified into ‘furniture’ and ‘crockery.’

5. Attention Matrix Visualization
Fig. 4 shows the visualization of the attention map generated by SEMA. The SEMA does not compute the attention matrix.

However, for visualization purposes, we have multiplied the Q’ and K’ to form an N ×N attention matrix. For each frame
(row in the figure), we pick the top 100 closest frame indexes. We observed that frames belonging to similar classes tend to
attend similar frames and are distributed globally.

6. Details of Epic Kitchens Dataset
To demonstrate the proposed framework on the Epic Kitchens dataset [4], we synthesize a long video sequence (approx.

20k frames) using the Epic Kitchens dataset. This dataset is divided into high-level categories based on the occurrences
of ‘noun’ classes. We pick equal video snippets of each category: ‘appliances,’ ‘cleaning,’ ‘crockery,’ ‘drinks,’ ‘furniture,’
‘meat,’ and ‘vegetables’ across all subjects and concatenate them to form a long colossal sequence. The subset ‘noun’ classes
selected for each category are listed in Table 1.
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Figure 2. The figure demonstrates the visualization of a comparison between the predicted class and ground truth for ‘P04’ sequence of
UTE dataset (for better visualization, we have divided the long sequence into 2000 frames for each row).

Category Id Category Name Nouns selected

1 Appliances Washing Machine, Fridge
2 Cleaning Cloth, Towel
3 Crockery Plate, bowl
4 Drinks Tea, Juice, Wine, Drink, Beer, Whisky
5 Furniture Floor, Chair, Wall
6 Meat Meat, Chicken, Sausage, Fish, Pork, Bacon, Beef
7 Vegetables Onion, Potato, Carrot, Tomato, Mushroom, Cucumber, Vegetables

Table 1. Nouns selected corresponding to the categories for Epic Kitchens dataset.

7. Annotation Procedure
We recruited three participants from different backgrounds (ECE undergraduate, CSE undergraduate, and CSE graduate)

for annotation. We have generated codebooks of each subject of the EgoRoutine [10] dataset separately and shared them with
participants to annotate videos on the same granularity. Each label file comprises the activity number and the corresponding
activity name (refer to Table 2 for the label file of subject-1 of EgoRoutine dataset). We share an annotation file with the
participants, comprising two columns titled start time and the activity number for each day of the subject. The activities
span for short to very long duration, so we just collect the activity’s start time with its corresponding activity number (from
the label file). Precisely, for a particular day of the photostream sequence, the user needs to start from the first fame of the
sequence and identify the activity performed from the activity codebook shared. The timestamp of the frame and the activity
number is filled in the two columns discussed. The timestamp can be obtained from the frame name itself. Each frame is
named XXXXXXXX HHMMSS XXX.jpg, where HHMMSS is the timestamp of the frame.

Table 3 demonstrates the details of the activity patterns used to annotate each subject. We can observe that the activity
patterns are vast and similar to the real world. For each subject, the number and type of activity patterns differ significantly.
The annotations also allow us to generate ground truth at multiple granularities as we annotated at high granularity. For
example, we can always merge ‘in metro’, ‘in cab’ and ‘in bus’ activities to ‘traveling’ at low granularity.



Figure 3. The confusion matrix demonstrates that inter-class confusion is marginal for most of the activity patterns.

Activity Number Activity Name
1 buying
2 having food in restaurant
3 having meeting and food at round table
4 working in lab
5 in metro
6 walking in lab and chitchatting
7 in gym
8 outdoor walking in day
9 outdoor walking in night

10 in lab kitchen
11 at metro station
12 walking in the building
13 in room
14 in cab
15 class room

Table 2. Activity labels for ‘S1’ of EgoRoutine dataset.

8. Evaluation Matrix
We use commonly used evaluation matrices titled Adjusted Mutual Information (AMI) and Normalized Mutual Informa-

tion (NMI), and F1 score to demonstrate the results. They are as follows:



8.1. Adjusted Mutual Information (AMI)

Suppose that the sequence of length N is partitioned into predicted clusters A = {A1, A2, ...AKp
} and ground truth

clusters B = {B1, B2, ..., BKg}, where, Kp an Kg are the number of clusters in the ground truth and predicted clusters. The
clusters are pairwise disjoint i.e. | ∪Kp

i=1 Ai| = | ∪
Kg

i=1 Bi| = N . Then the mutual information between two clusters can be
defined as:

MI(A,B) =

Kp∑
i=1

Kg∑
j=1

PAB(i, j)log
PAB(i, j)

PA(i)PB(j)
(24)

where PAB(i, j) =
|Ai∩Bj |

N denotes the probability that frame belong to both the clustersAi ∈ A andBi ∈ V , PA(i) =
|Ai|
N ,

and PB(j) =
|Bj |
N .

The expected mutual information can be defined as:

E{MI(A,B)} =
Kp∑
i=1

Kg∑
j=1

min(ai,bj)∑
nij=(a+b−N)+

nij
N
log(

N.nij

aibj
)×

ai!bj !(N − ai)!(N − bj)!
N !nij !(ai − nij)!(bj − nij)!(N − ai − bj + nij)!

(25)

where (ai + bj − N)+ = max(1, ai + bj − N), nij denotes the number of common frames in clusters Ai and Bj ,
ai =

∑Kg

j=1 nij , and bj =
∑Kp

i=1 nij .

From Equation 24 and 25, the AMI is defined as [7]:

AMI(A,B) =
MI(A,B)− E{MI(A,B)}

max{H(A), H(B)} − E{MI(A,B)}
(26)

8.2. Normalized Mutual Information (NMI)

Similarly, from equation 24 and 25, the NMI is defined as [7]:

NMI(A,B) =
MI(A,B)

(H(A) +H(B))/2
(27)

8.3. F-score

Similar to [1,5], we use the greedy approach [6] for a one-to-one mapping between the predicted clusters and ground truth
clusters. The cost of assigning cluster i to class label j is computed as the F1 score weighted by population for class j when
i is assigned to j. The precision (Pr), recall (Rr) and F-score (Fr) are defined as:

Pr =
TP

TP + FP
, and Rr =

TP
TP + FN

Fr =
2× Pr ×Rr

Pr +Rr
× 100% (28)

where TP, FP, and FN represent the true positive, false positive, and false negative calculations.

9. Hardware Requirements
All the codes are executed on A100 GPU (40GB GPU memory) and the CPU (Intel Xeon Silver 4210) with 128GB RAM

and 48 cores. It takes approximately half an hour to execute 3000 epochs.



Id #Activities Name of Activity Patters

S1 15

buying, having food in restaurant, having meeting and food at round table,
working in lab, in metro, walking in lab and chitchatting, in gym, outdoor
walking in day, outdoor walking in night, in lab kitchen, at metro-station,
walking in the building, in room, in cab, in class room

S2 25

in home kitchen, in balcony (tea), working on laptop at home, having food,
walking in building, walking in day (walking outdoor), cycling, operating
vending machine/ATM, at metro station, in metro, walking in night,
purchasing, using mobile/kindle (in room), washroom, sitting at beach,
in mall /hotel having food, bus, room view, using laptop in lab,
using mobile/kindle but not in room, having tea (in room), walking
in lab and chitchatting, in library, working on laptop at library, in museum

S3 16

room view, in kitchen, having food (room/restaurant/cafe), at metro station,
in metro, in washroom, outdoor walk in day, walking in building/ taking
printout from printer, walking in lab and chitchatting, working on laptop
(watching movie on laptop), in class room/ attending presentation,
using mobile, purchasing (in mall/food/bakery/watch), outdoor walk in
night, at airport, in advisor’s room

S4 31

in room (walking, kitchen), walking outdoor (day), walking in building,
working on laptop or desktop (in room or lab), riding bike, in hospital
waiting room, with doctor, having food/in restaurant, walking in lab and
chitchatting, using mobile (outdoor/restaurant/airport), in classroom,
in washroom, watching TV and using mobile in room, purchasing toys, veggies,
fruits, at airport, walking outdoor in night, at metro station, in metro, driving
car, in swimming pool, Blur images, in school, in plane, attending a
presentation, coffe/tea break at conference/at lounge, giving presentation, in
cab, hosting a conference as receptionist, in open-bus/bus, at poster,
at beach and mountains

S5 24

in room, outdoor walk in day, walking in building, working on laptop,
driving car, in metro, at metro station, walking in lab and chitchatting,
class room/attending presentation in audi/conference), having food at
(home/restaurant/in conference), outdoor walk in night, in cab, at airport, in
flight, purchasing (on stores at airport/local shops/mall/tickets at bus station),
in hotel room/ hotel, at conference venue/ lounge/ reception, in bus, on beach,
archaeological zone, at poster, monument visit, bus station, watching television

S6 19

at home, outdoor walk in day, walking in building, working on laptop,
walking in lab and chitchatting, purchasing (food, shoes, toys, books),
having food (in lab, restaurant), washroom, outdoor walk in night,
in kitchen, in classroom, in Bus, in hotel room, museum, in car,
visiting a old township and mountains, at metro station, in metro, at circus

S7 25

at home, outdoor walk in day, walking in building, working on laptop,
walking in lab and chitchatting, purchasing (food, cloths, sweets,
fruits, in supermarket), having food (in lab, restaurant), at metro station,
in metro, at fair, washroom, outdoor walk in night,
blank frame, in bus, in hospital/clinic/medical facility,
in classroom, at concert, meeting with professor, sitting in park (picnic),
at conference venue, at poster, attending presentation, in kitchen, in car,
walking in hill area/trekking

Table 3. Table demonstrates the details of the activity patterns used to annotate each subject. We can observe that the activity patterns are
vast and similar to the real world. For each subject, the number and type of activity patterns differ significantly. The annotations also allow
us to generate ground truth at multiple granularities as we annotated at high granularity. For example, we can always merge ‘in metro’, ‘in
cab’ and ‘in bus’ activities to ‘traveling’ at low granularity.
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Figure 4. The visualization shows the attention map generated by the SEMA for ‘subject 1’ (all 14 days). The color bar on the X-axis and
Y-axis shows the ground truth corresponding to the frame. The white patches in each row show the frames attended corresponding to the
input frame. We sorted the frames by the ground truth classes (color bar in the column) to better view the attention of frames belonging to
similar classes.


