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1. Choosing patch size parameter P

The patch size used by the local branch of PRN is con-
trolled by the parameter P. Fig. 1 shows the effect of P
on mloU, which is evaluated on 100 randomly augmented
images from the DeepGlobe training set. The best choice,
P = 64, results in the local branch dividing the input logit
map into sixty-four patches of size 64 x 64. Since the testing
set was not used at all for choosing patch size, it is appro-
priate to use P = 64 in the rest of our experiments.
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Figure 1. Effect of patch size parameter P. mloU is computed
using the DeepGlobe training set.

2. Comparison with DenseCRF

In this section, we compare the performance of PRN
with DenseCRF [1], which is a popular method for post-
processing segmentation maps.

We performed grid search on 100 randomly augmented
images from DeepGlobe, Kvasir-SEG, DUTS and FSS-
1000 traning sets to find the respective DenseCRF hyperpa-
rameters, as suggested in the original paper. [1]. Tables 1,
2, 3 and 4 tabulate quantitative results of performance com-
parison. Figure 2 shows the qualitative comparison between
PRN and DenseCRF refinement. It can be observed that
DenseCREF is unable to remove large regions of false posi-
tives and false negatives from the base network’s segmenta-
tion maps. This is because, DenseCRF is an unsupervised

DUTS [12]

Methods mloU (%) | mBA (%)
RFCN [13] 52.8 40.7
(+) DenseCRF | 54.6115 | 42.2115
(+) PRN 571143 | 485178
PFAN [15] 66.1 51.2
(+) DenseCRF | 67.0109 | 52.4115
(+) PRN 69~9T3.8 58.6T7,4

Table 1. Quantitative results comparing PRN (P=64) with Dense-
CRF on DUTS saliency detection dataset.

Kvasir-SEG [5]

Methods mloU (%) | mBA (%)
U-Net [10] 41.5 38.8
(+) DenseCRF 43'2T1~7 41-67‘2.8
(+) PRN 47'8T6.3 46.3T7.5
ResUnet [3] 46.8 45.7
+) DenseCRF 48'3Tl~5 47.1»“'4
(+) PRN 529T61 525T68
ResUnet++ [6] 55.9 56.8
(+) DenseCRF 56.870.9 58.2*?1‘4
(+) PRN 61-7T5.8 62~9T6.1
SSFormer-S [11] 86.8 69.7
(+) DenseCRF 87.611]_8 70.9¢1,2
(+) PRN 89'1T2~3 72'3T2~6

Table 2. Quantitative results comparing PRN (P=64) with Dense-
CRF on Kvasir-SEG dataset.

method that does not capture global semantics between pix-
els regions. It is only able to achieve smoothing along the
boundary, which is the cause for a small improvement in
mloU and mBA. We also observed that applying DenseCRF
to PRN does not provide any significant improvement in
performance. The results are consistent across all datasets.
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Figure 2. Qualitative results comparing performance of PRN (P=64) with DenseCRF on samples from Kvasir-SEG (Rows 1&2)
and DUTS saliency detection (Rows 3&4) test sets. Left to Right: Ground Truth, Logit map from base network SSFormer-S [11] (Rows
1&2) and PFAN [15] (Rows 3&4), SSFormer-S prediction (Rows 1&2) and PFAN prediction (Rows 3&4), Refined by DenseCRF, Refined

by PRN.

3. More qualitative results for performance
evaluation of PRN

Figures 3, 4 and 5 show qualitative results for PRN
refinement PRN with a patch-size parameter P = 64
when applied to DeepGlobe, DUTS saliency detection and
Kvasir-SEG datasets respectively. Going from left to right,
the figures show Ground Truth, Logit map from the base
network, binarized prediction of the base network, and PRN
refined map. Yellow boxes mark the regions of refinement.
It can be observed that PRN is able to achieve significant vi-
sual improvement compared to the corresponding segmen-
tation maps from state-of-the-art base networks with fixed
(0.5) thresholding.
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Figure 3. Qualitative results produced by PRN (P = 64) on samples from DeepGlobe test dataset. Left to Right: Ground Truth, Logit
map from base network CoANet [9], Prediction from CoANet , Refined by PRN. Yellow boxes denote regions of refinement.
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Figure 4. Qualitative results produced by PRN (P = 64) on samples from DUTS saliency detection test dataset. Left to Right:
Ground Truth, Logit map from base network PFAN [14], Prediction from PFAN, Refined by PRN. Yellow boxes denote regions of refine-
ment.
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Figure 5. Qualitative results produced by PRN (P = 64) on samples from Kvasir-SEG test dataset. Left to Right: Ground Truth,
Logit map from base network SSFormer-S [ ! 1], Prediction from SSFormer-S, Refined by PRN. Yellow boxes denote regions of refinement.



I

imn'n

Figure 6. Qualitative results produced by PRN (P = 64) on samples from FSS-1000 test dataset. Rows 1& 3: Support images. Left
], Refined map by PRN. Yellow boxes denote

to right: Ground Truth, Thresholded (0.5) prediction from Adapted Relation Network [

regions of refinement.




DeepGlobe [2]

Methods mloU (%) | mBA (%)
FCN-8s [8] 48.6 31.7
(+) DenseCRF 50.97\2,3 34‘9T3<2
(+) PRN 54'1T5-5 42'3T10<6
U-Net [10] 55.8 37.6
(+) DenseCRF 57.6¢1,8 40'5T2‘9
(+) PRN 609‘[‘51 474?98
DeepLabV3+ [1] 59.2 47.6
(+) DenseCRF 59'9T0~7 49'3T1~7
(+) PRN 61'9T2~7 55~9T8.3
PSPNet [14] 59.8 48.2
(+) DenseCRF 60.310.5 49.7415
(+) PRN 62-4T2.6 56.6¢8,4
D-LinkNet [16] 61.3 49.8
(+) DenseCRF 62.040.7 51.441.6
(+) PRN 64.4:5, | 56.6168
CoANet [9] 67.9 58.4
(+) DenseCRF 69'0T1-1 59'6T1~2
(+) PRN 70'6T2‘7 62.].?3.7

Table 3. Quantitative results comparing PRN (P=64) with Dense-
CRF on DeepGlobe dataset.

FSS-1000 [7]

Methods miloU (%) | mBA (%)
Adapted Relation Network [7] 80.1 69.8
(+) DenseCRF 81.21«1.1 71.1¢1.3
(+) PRN 82-7T2.6 72'9T3-1
EfficientLab [4] 82.8 71.1
(+) DenseCRF 83.8T1,0 72'3T1-2
(+) PRN 84.1115 | 73.2421

Table 4. Quantitative results comparing PRN (P=64) with Dense-
CRF on FSS-1000 dataset.
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