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A. Overview of Appendices
Here we present additional experimental results and dis-

cussion that solidify the findings we discuss in the main
publication. We include additional experiments and anal-
ysis regarding the facial action unit task and model archi-
tecture and ablation studies in Section B. Example wave-
forms are included in Section C. Details of pre and post
processing are included in Section D and Section E. De-
tails of SOTA methods and datasets are included in Sec-
tion F. Additional discussions regarding broader impacts
and future work can be found in Section G. Other discus-
sions may be found in Section H. Code, pre-trained models,
and a video figure can be found at our github repository:
github.com/girishvn/BigSmall. Additional information can
be found at our website: girishvn.github.io/BigSmall.

B. Additional Experiments, Discussions
Here we cover experiments that motivate the need for a

unified multi-task physiological model, full and additional
AU results for cross-dataset generalization, full AU results
for SOTA model comparisons, ablation results regarding
BigSmall branch information sharing and fusion, AU re-
sults using gray scale inputs, experiments regarding optimal
chunk length, and additional experiment detail not outlined
in the main publication.

B.1. Cross Modality Pre-training and Fine-tuning

As discussed in the main paper, we run an experi-
ment where we pre-train adaptations of BigSmall on a sin-
gle physiological signal (either PPG, respiration, or AU),
and fine-tune the resulting embedded (resetting the final
dense layers, and freezing the remainder of the embed-
ding), on a different signal. These results, relative to single-
physiological-task trained and validated results, can be seen
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Figure 1. Overview of the Proposed BigSmall Model. We
present the first joint facial action, cardiac, and pulmonary mea-
surement model from video. By leveraging a dual-branch archi-
tecture with wrapped temporal shift modules we achieve strong
accuracy with an efficient multi-task implementation.

in Fig.2. Interestingly, we see a degradation of results in all
pre-train fine-tune pairs by no less that 23%, and as much
as 459%. Note that in the figure lower metrics for PPG and
respiration are better, and the higher measures are better for
AU. This suggests that the embeddings from one modality
do not adapt well to another, and thus that SOTA perfor-
mance requires individual task-optimized networks. This
illustrates the utility of a unified general framework, like
BigSmall, that is able to simultaneously learn these dis-
parate signals while making efficiency gains over task opti-
mized models.
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Table 1. AU comparisons of the BigSmall model vs. literature baselines. Models trained/tested on BP4D+. † denotes the use of
landmark face alignment for the Big input.

Metrics DRML
[5]

AlexNet
[6]

Big
Pathway

DRML†

[5]
AlexNet†

[6]
JAA-Net†

[12]
JÂA-Net†

[13]
BigSmall

(Ours)
BigSmall†

(Ours)
BigSmall++†

(Ours)

AU (F1) AU01 16.3 24.3 20.7 24.8 30.3 43.2 43.5 22.1 30.0 42.4
AU02 12.0 19.5 16.5 20.2 26.4 34.7 37.9 18.6 25.7 35.3
AU04 8.0 12.3 11.4 18.7 17.7 22.9 28.9 12.6 22.0 24.2
AU06 73.9 72.4 75.6 80.7 81.6 81.7 83.1 70.2 82.7 82.5
AU07 78.4 79.8 76.4 82.3 84.2 83.6 84.6 73.3 83.1 85.8
AU10 80.9 82.0 81.6 88.6 88.6 88.0 89.7 74.7 88.7 89.2
AU12 80.1 78.9 81.6 87.2 87.1 86.6 88.0 73.6 86.4 87.6
AU14 70.9 72.8 68.5 77.6 79.0 74.2 80.5 67.7 75.6 79.6
AU15 21.3 13.8 24.0 34.3 30.1 35.5 35.7 26.2 34.0 33.1
AU17 32.6 24.3 34.4 36.7 37.8 42.9 45.8 29.6 40.7 36.5
AU23 35.4 36.0 37.1 43.9 42.8 49.0 51.8 38.3 50.2 43.6
AU24 18.4 14.3 15.6 20.5 23.8 27.0 25.4 12.1 26.0 18.6

AU (Avg) F1 44.0 44.2 45.3 51.3 52.5 55.8 57.9 43.3 53.8 54.9
Acc. (%) 74.9 63.1 73.8 78.6 76.5 85.9 85.6 67.4 80.0 86.4

PPG (MAE ↓) AU (F1 ↑)Resp (MAE ↓)

Finetune and Test Modality (Metric)
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Figure 2. Cross-Physiological Signal Pre-Training. Pre-training
a BigSmall esc. model on one modality and fine-tuning on another
leads to a drop in relative performance for all modalities.

B.2. BP4D+ SOTA Comparison: Full AU Results

We report individual AU results for BigSmall iterations
and AU SOTA models presented in the main publication.
These models are trained and validated (via 3-fold cross val-
idation) on BP4D+. These results are shown in Table 1.

B.3. Cross-AU-Dataset Generalization

Like prior work [12, 13] we evaluate AU model general-
izability by fine-tuning BP4D+ pre-trained models the on
DISFA [11] dataset (for 8 common) action units. These
action units include the following AUs: 1, 2, 4, 6, 9, 12,
25, 26. In Table 2 we provide AU-level results for the
DISFA generalization results presented in the main publica-
tion. For these experiments models are trained on BP4D+
for 5 epochs and then refined on DISFA for 2 epochs. We
see that iterations of BigSmall out perform common AU

baselines and perform similarly to AU SOTA models.

B.4. Fusion / Data Sharing Ablation Experiments

We explore the type of connections used to fuse the Big
and Small branches of BigSmall. These results are shown
in Table 3.

We first test the use of concatenation of the Big and
Small feature maps (as opposed to summing). Concatena-
tion of the features maps results in a negligible difference in
performance while significantly increasing the number of
parameters in the model due to large output dense layers.

We further explore the use of lateral information sharing
of high-level features between the Big and Small branches.
These lateral connection occur after the first pooling layer
of the Big branch and after the second convolutional layer
of the Small branch. We test Big-to-Small, Small-to-Big,
and bi-directional lateral connections. Big-to-Small lateral
connections temporally upsample and spatial downsample
the Big feature map to match the dimensions of the Small
branch, and then concatenate these features with the Small
branch feature map (along the channel dimension). Small-
to-Big lateral connections temporally downsample and spa-
tially upsample the Small branch feature map to match the
dimensions of the Big branch, and then concatenate these
features with the Big feature map (along the channel di-
mension). Bi-direction lateral connections utilize both the
aforementioned Big-to-Small and Small-to-Big lateral con-
nections.

We find that all methods of high-level information shar-
ing benefit the PPG task. AU performance benefits from
Big-to-Small fusion, but regresses considerably with Small-
to-Big fusion. Respiration benefits from Small-to-Big fu-
sion, but regresses considerably with Big-to-Small fusion.
This suggests that though high level information sharing



Table 2. Evaluation on Public Spatial Dataset: DISFA [11].
Following [12, 13], we fine-tune models trained on BP4D+ on
DISFA, and evaluate using a 3-fold cross-validation across 8 AUs.
All inputs are face-aligned following [12, 13].

Model DRML [5] AlexNet [6] JAA-Net [12] JÂA-Net [13] BigSmall BigSmall++

AU01 18. 11.1 19.9 28.7 18.4 27.6
AU02 15.6 9.7 4.2 35.2 18.4 27.1
AU04 31.7 26.2 36.8 49.3 35.4 45.8
AU06 35.4 39.2 28.5 42.3 45.0 33.7
AU09 24.6 21.8 24.7 23.7 23.6 22.8
AU12 60.8 53.1 60.5 65.8 64.7 63.9
AU25 72.9 69.3 75.8 86.1 84.2 82.6
AU26 46.2 34.3 42.7 43.9 49.5 38.5

Avg. F1 ↑ 38.2 33.1 36.6 46.9 42.4 42.7
Avg. Acc. ↑ 81.4 74.1 80.9 86.0 80.5 86.7

may benefit all tasks independently, the high level features
of interest differ between respiration and AU, preventing a
unified lateral connection system that benefits all tasks si-
multaneously.

B.5. Gray Scale Big Input

Some previous works [5] train AU models using gray
scale images which preserve texture information and reduce
the number parameters which may cause overfitting. We
find that using gray scale Big inputs results in reduced per-
formance for BigSmall. This is likely as the Big branch of
BigSmall is able to leverage color-channel-dependent vari-
ations embedded in the 3-color-channel Small input differ-
ence frames. Results in Table 4.

B.6. Optimal Input Frame Number for Spatial Task

As detailed in the main paper, spatial task performance
degrades when trained with a high of number consecutive
frames which reduces variance in the training mini batches.
We train the AU task-optimized Big branch model using
a number of chunked data lengths to empirically illustrate
how performance degrades as the number of consecutive
frames increases. We observe that there is significant degra-
dation in AU task performance after N exceeds 9. For our
experiments we use N = 3 to highlight the abilities of BigS-
mall and the Wrapping Temporal Shift Modules in situa-
tions that necessitate small N due to training or latency con-
siderations. This is highlighted in Fig. 3.

B.7. Additional Experiment Details

Face Aligned AU Inputs. AU SOTA [5, 12, 13], use
face-aligned images, which drastically improve AU mul-
tilabel classification results. This face alignment, as im-
plemented by [12, 13] involves a ”similarity transformation
including in-plane rotation, uniform scaling, and transla-
tion... This transformation is shape-preserving and brings
no change to the expression” [13]. It should be noted that
this transformation requires pre-annotated facial landmarks
and additional preprocessing, reducing the efficiency of AU

networks.

Figure 3. Consecutive Frames N vs Avg. 12 AU F1. These 12
AU average F1 scores, from the Big branch model trained with a
number of different consecutive frames N , shows that AU perfor-
mance degrades as the N increases.

BigSmall Adaptations For Face Aligned Inputs. We
find that BigSmall performs significantly better with face
aligned inputs when batch normalization layers are added
to the Big Branch. We add these batch norm layers after the
first, third, and fifth convolutional layers in the Big branch.

JAA-Net Loss Functions. Though BigSmall and other
AU networks use weighted binary cross entropy as the loss
function, we use the custom loss functions described in [12,
13] for JAA-Net and JÂA-Net.

C. Example Waveforms

Fig. 4 illustrates additional PPG and Respiration pre-
dictions from BigSmall plotted against the sensor ground
truth. NOTE, PPG predictions are plotted against the Blood
Pressure waveform (BP4D+ pulse ground truth). This
accounts for the similar waveform frequency content but
phase-misalignment. Similar animated waveform plots may
be found in our video figure.

D. Preprocessing

D.1. Video Frame Inputs

Raw and normalized difference inputs are processed to
match the preprocessing of [8]. The described transforms
are performed per-video before the videos are chunked.
Before each frame is transformed, the frames are center
cropped, along the vertical axis, in order to produce square
frames.



Table 3. BigSmall Branch Data Sharing Ablation: We compare different designs of data sharing between the two branches of BigSmall.

Model Fusion
Method

Lateral
Connection

Heart Rate Breathing Rate AU Avg. Computation

MAE RMSE MAPE ρ MAE RMSE MAPE ρ F1 Acc FLOPS (M) # Params (M)

BigSmall Sum Bi-Directional 2.21 5.46 2.55 0.91 3.93 5.54 18.98 0.10 46.9 72.3 172.35 2.16
BigSmall Sum Big-To-Small 2.32 5.84 2.62 0.89 3.80 5.39 18.42 0.12 46.0 69.5 154.76 2.15
BigSmall Sum Small-To-Big 2.37 5.96 2.70 0.89 3.37 4.99 16.48 0.19 40.6 61.4 171.60 2.15
BigSmall Concat − 2.28 5.68 2.58 0.90 3.72 5.28 17.94 0.15 43.5 67.3 156.00 4.13
BigSmall Sum − 2.38 6.00 2.71 0.89 3.39 5.00 16.65 0.21 43.3 67.4 154.01 2.14

Table 4. Comparison of BigSmall With Gray Scale Big Input.
Best results of each row are in bold.

Metrics BigSmall w/ Gray Scale
Big Pathway Input

BigSmall
(Ours)

Heart Rate MAE 2.29 2.38
RMSE 5.75 6.00
MAPE 2.59 2.71

ρ 0.89 0.89

Resp. Rate MAE 3.62 3.39
RMSE 5.26 5.00
MAPE 17.63 16.65

ρ 0.18 0.21

AU (F1) AU01 19.6 22.1
AU02 18.1 18.6
AU04 11.5 12.6
AU06 65.0 70.2
AU07 71.3 73.3
AU10 71.2 74.7
AU12 68.9 73.6
AU14 68.0 67.7
AU15 25.2 26.2
AU17 24.8 29.6
AU23 35.1 38.3
AU24 8.7 12.1

AU (Avg) F1 40.6 43.3
Acc. (%) 61.3 67.4

Small Inputs (Normalized Difference Frames). Nor-
malized difference frames are derived by taking the dif-
ference of a frame k[n] and a frame k[n + 1] such that
kdiffnorm[n] = (k[n + 1] − k[n])/(k[n + 1] + k[n]). This
denominator normalization factor helps to reduce depen-
dence on per-frame-skin brightness and appearance [8]. The
resulting frames are mean and standard deviation standard-
ized. These frames are then downsampled to 9x9px.

Big Input (Raw Frames). The raw frames are mean
and standard deviation standardized. The resulting frames
are then downsampled to 144x144px. As described above
as well, we also generate a version of the BigSmall dataset
where the Big inputs are land-mark face aligned.

D.2. Data Labels

Label Preparation. Following previous work [8, 19],
the respiration and PPG labels are difference noraml-
ized, to match the format of the Small branch difference
frame inputs. This is done such that for a sample k[n],
kdiffnorm[n] = (k[n + 1] − k[n])/(k[n + 1] + k[n]). The
resulting samples are mean and standard deviation standard-
ized. AU labels are not difference normalized as the spatial
branch (Big branch) inputs are not difference normalized.

PPG Pseudo Labels. Early explorations indicated an
ineptitude of BigSmall to effectively learn the PPG sig-
nal when trained on blood pressure waveform labels (the
BP4D+ ground truth heart signal). Thus, we train the
PPG task using “pseudo” PPG labels derived using the
Plane Orthogonal-to-Skin (POS) [18] method. These POS-
derived signals are then aggressively filtered using a 2nd Or-
der Butterworth filter centered on the mean heart rate (ac-
counting for 20 BPM variation), derived by using a FFT-
based calculation on the sensor-ground truth blood pres-
sure waveform. The minimum and maximum filter cut-
off frequencies were set to normal heart-rate frequencies
of [0.70, 3] Hz. The amplitude of the resulting signals are
then normalized using the Hilbert envelope. Although these
“pseudo” labels are used to train, all models are still eval-
uated against BP4D+’s ground truth blood pressure wave-
form which shares the PPG signal’s heart rate frequency.

AU Labels. BP4D+ has labels for 34 AU activations. We
choose to use 12 of these AUs for training and evaluation
based off previously published literature [5, 12, 13] and as
these 12 AUs (1, 2, 4, 6, 7, 10, 12, 14, 15, 17, 23, 24)
have sufficient positive occurrences in the dataset. Some
AU activations in both BP4D+ and DISFA are labeled as
intensities [0-5], where 0 is no activation and 5 is maximum
activation. For DISFA, following previous work [5, 12, 13]
we use 8 AUs (1, 2, 4, 6, 9, 12, 25, 26) for fine-tuning and
evaluation. Following previously published work we train
and test using binarized AU activation (0 for inactive, 1 for
activate regardless of intensity) for both AU datasets.

BP4D+ Data Splits. We split the BP4D+ dataset into
the following 3 subject-independent splits, used for 3-fold
cross-validation. Note that all splits have approximately
equal participants, and approximately equal subjects of each
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Figure 4. Sample PPG and Respiration Waveforms. BigSmall PPG ad respiration waveforms plotted against the sensor ground truth.
Note that PPG predictions are plotted again the blood pressure waveform, the BP4D+ heart-signal ground truth.

biological sex. “F” denotes female subjects, while “M” de-
notes male subjects.

Split 1: F003, F004, F005, F009, F017, F022, F028,
F029, F031, F032, F033, F038, F044, F047, F048, F052,
F053, F055, F061, F063, F067, F068, F074, F075, F076,
F081, M003, M005, M006, M009, M012, M019, M025,
M026, M031, M036, M037, M040, M046, M047, M049,
M051, M054, M056

Split 2: F001, F002, F008, F018, F021, F025, F026,
F035, F036, F037, F039, F040, F041, F042, F046, F049,
F057, F058, F060, F062, F064, F066, F070, F071, F072,
F073, F077, M001, M002, M007, M013, M014, M022,
M023, M024, M027, M029, M030, M034, M035, M041,
M042, M043, M048, M055

Split 3: F078, M008, F080, M011, F014, M033, F020,
M010, M052, M057, M017, M038, F030, F051, M032,
F013, F011, F015, F016, F065, M015, M020, F007, F050,
F010, M021, F012, F045, F059, M045, F023, M004, F069,
M044, M053, M018, M058, M050, F019, F024, F034,
F079, M039, F056, F054, F027, F043

Excluded Samples BP4D+. We exclude the following
samples from the BP4D+ dataset due labeling issues (mis-
match length, missing data, etc.):

F001T8, F010T10, F013T6, F014T8, F015T6, F016T6,
F019T4, F022T7, F024T4, F024T9, F027T4, F028T8,
F029T9, F030T7, F030T9, F033T6, F033T7, F033T8,
F036T6, F038T1, F041T7, F043T1, F043T10, F043T7,
F047T7, F048T7, F051T4, F054T7, F059T4, F061T4,
F061T7, F062T4, F062T8, F067T4, F068T7, F072T4,
F073T4, F077T4, F078T9, F081T4, M005T5, M005T7,
M009T10, M009T4, M009T7, M011T8, M014T4,
M014T7, M017T10, M017T7, M019T3, M023T10,

M024T1, M024T2, M030T4, M033T1, M033T9, M035T6,
M041T4, M041T7, M042T7, M046T1, M047T10,
M047T7, M049T6, M049T7, M051T4, M055T8.

DISFA Fine-Tuning Splits. We split the DISFA dataset
into the following 3 subject-independent splits, used for 3-
fold cross-validation model fine-tuning. Note that all splits
have approximately equal participants.

Split 1: SN001, SN002, SN003, SN004, SN005, SN006,
SN007, SN008, SN009

Split 2: SN010, SN011, SN012, SN013, SN016, SN017,
SN018, SN021, SN023

Split 3: SN024, SN025, SN026, SN027, SN028, SN029,
SN030, SN031, SN032

E. Postprocessing

E.1. Heart and Respiration Rate From Waveform

PPG and respiration waveform labels are difference nor-
malized to match the temporal branch inputs. Thus predic-
tions are also in a difference normalized form. PPG and
respiration waveforms are derived from the difference nor-
malized waveforms by taking the cumulative sum of the
waveform at every sample and then detrending the result-
ing vector.

Signal rates are then derived by applying a 2nd Order
Butterworth filter with cut-off frequencies of [0.75, 2.5] Hz
for heart rate and [0.08, 0.5] Hz for respiration rate to the
signal waveforms and using a peak detection algorithm on
the Fourier spectrum of the filtered signals.



E.2. AU Model Prediction Thresholding

AU outputs from the final model layer are passed through
a sigmoid function to bound the output (0,1). We use a
threshold of 0.5 to binarize the output of the sigmoid such
that AU sigmoid output < 0.5 = 0 (inactive) and AU sigmoid
output ≥ 0.5 = 1 (active).

E.3. Heart and Respiration Rate Evaluation Met-
rics

Mean Average Error (MAE). The MAE as defined be-
tween the predicted signal rate Rpred and the ground truth
signal rate Rgt for a total of T instances:

MAE = 1

T

T

∑
t=1

∣Rgt −Rpred∣

Root Mean Square Error (RMSE). The RMSE as
defined between the predicted signal rate Rpred and the
ground truth signal rate Rgt for a total of T instances:

RMSE =

¿
ÁÁÀ 1

T

T

∑
t=1

(Rgt −Rpred)2

Mean Average Percent Error (MAPE). The MAPE as
defined between the predicted signal rate Rpred and the
ground truth signal rate Rgt for a total of T instances:

MAE = 1

T

T

∑
t=1

∣Rgt −Rpred

Rgt
∣

Pearson Correlation (ρ). The Pearson correlation as
defined between the predicted signal rate Rpred and the
ground truth signal rate Rgt for a total of T instances, and
R the mean of R over T instances:

ρ =
∑T

t=1 (Rgt.t −Rgt)(Rpred.t −Rpred)
¿
ÁÁÀ(∑T

t=1Rgt.t −Rgt)
2

(∑T
t=1Rpred.t −Rpred)

2

E.4. AU Evaluation Metrics

F1. The F1 as defined between a list of predictions and
ground truth labels, where TP is the true positive count,
FP is the false positive count, and FN is the false negative
count:

100 ∗ 2TP

2TP + FP + FN

Accuracy (%). The accuracy as defined between a list
of predictions and ground truth labels, where TP is the true
positive count, TN is the true negative count FP is the false
positive count, and FN is the false negative count:

100 ∗ TP + TN
TP + TN + FP + FN

F. SOTA Methods and Dataset Descriptions
F.1. Temporal Task Baselines

An implementation of these rPPG baseline methods may
be found in [10].

DeepPhys [2]. A dual pathway convolutional neural net-
work for PPG estimation. The network utilizes attention
from the “Appearance Branch” which models the location
of skin pixels, to assist the “Motion Branch” which models
changes in skin color correlated to the pulse signal.

MTTS-CAN [8]. An efficient dual pathway convo-
lutional neural network for PPG and respiration multi-
tasking. The network utilizes attention from the “Appear-
ance Branch” which models the location of skin pixels, to
assist the “Motion Branch” which models changes in skin
color correlated to the pulse signal. The “Motion Branch”
makes use of Temporal Shift Modules [7] to share informa-
tion between time samples.

EfficientPhys [9]. An efficient implementation of a con-
volutional rPPG network that utilizes a single-branch archi-
tecture. The network makes use of normalization and learn-
able normalization modules as well as self attention.

POS [18]. A signal processing method that utilizes the
individual color channel (R, G, B) signals. These signals
are split into overlapping window segments. For each win-
dow segment each color channel signal is normalized by its
mean. The PPG signal for that window is then calculated
through a relationship between the original color channel
signals and mean signals. The final PPG signal is recon-
structed by piecing together the overlapping window seg-
ments.

CHROM [4]. A signal processing method that utilizes
chrominance signals to derive the PPG signal. The method
filters the individual color channel (R, G, B) signals around
the normal heart rate frequency, and then windows the sig-
nals into overlapping segments. A relationship between
the color-channel-based signals is then used to derive the
PPG signal windows. The resulting segments are further
Hanning-windowed and pieced together using an overlap-
ping add technique to obtain the final PPG signal.

F.2. Spatial Task Baselines

JAÂ-Net [13]. A network that achieves SOTA perfor-
mance. This convolutional network simultaneously learns
action unit activations and facial landmarks. This multi-
tasking results in stabilized learning of action units and fa-
cial features.

JAA-Net [12]. An earlier iteration of [13]. This network
has a similar architecture to its successor with a slightly dif-
ference in layers used for local AU extraction and the defi-
nition of the loss function.

DRML [5]. Deep Region and Multi-Label Learning is a
convolutional network that utilizes region learning to better



isolate regions of the face in which different AUs activate.
The use of a “region layer” helps the model learn spatial
information regarding individual AU’s without incurring the
computational cost of needing to isolate individual pixels as
is done by [17].

AlexNet [6]. A convolutional network used to baseline
image classification tasks. It consists of a number of con-
volutional and pooling layers before a number of fully con-
nected layers.

F.3. Multi-Task (PPG + Resp + AU) Datasets

BP4D+ [20–22] The BP4D+, a large multimodal emo-
tion dataset, consists of face video (25fps) from 140 par-
ticipants (82 female, 58 male). Each participant records
10 trials, each of which is meant to elicit a specific emo-
tional response: happiness, surprise, sadness, startle, skep-
ticism, embarrassment, fear, pain, anger, disgust. These
trials are labeled with the following signals: blood pres-
sure (systolic/diastolic/mean/bp wave), heart rate, respira-
tion (rate/wave), electrodermal activity. Trials 1/6/7/8 are
FACs encoded for the most ”facially expressive” portion.
We refer to the portion of the dataset with AU labels as the
AU subset (consisting of 200k frames). This AU subset is
the only portion of the dataset with concurrent AU, respira-
tion, and PPG labels.

F.4. PPG Datasets

PURE [16]. A dataset comprised of RGB video record-
ings (30fps) from 10 participants (2 female, 8 male). Par-
ticipants are seated and front lit with ambient light from
a window. Each subject participates in 6 recordings, each
with the individual performing different motion tasks. The
dataset contains ground truth, contact-sensor-based, PPG
and SpO2 measurements.

UBFC [1]. A dataset comprised of RGB video record-
ings (30fps). Participants are seated and lit with ambient
light. The dataset contains ground truth, contact-sensor-
based, PPG measurements.

F.5. AU Datasets

DISFA [11]. A dataset comprised of 4 minutes of RGB
video recordings (20fps) per 27 subjects. Each frame of the
dataset is manually FACS coded for 12 AUs (AU1, AU2,
AU4, AU5, AU6, AU9, AU12, AU15, AU17, AU20, AU25,
AU26) with an intensity measure [0-5].

G. Broader Impacts and Future Work
Potential Risks and Mitigation Strategy Physiological

sensing has a wide range of potentially positive applications
in health sensing. However, there is also the potential for
“bad actors” to use these technologies in negative or negli-
gent ways. Therefore, it is crucial to consider the implica-
tions of improving the accuracy, availability, and scalability

of sensing methods of this kind. To mitigate negative out-
comes, we have taken steps to license our models and code
using responsible behavioral use licenses [3].

Application To Other Domains. Though BigSmall is
evaluated on physiological sensing tasks, we believe that
such a model may allow multi-tasking in other domains in
which modeling disparate spatiotemporal signals may be
of interest. We hypothesize that a BigSmall-esc. model
may show significant benefit in situations where the mod-
eled signals are more related (shared task-gradient direc-
tion) than those presented in this work.

COVID-19. The COVID-19 pandemic has catalyzed in-
terest in remote medicine and health sensing via ubiquitous
technologies (e.g., a mobile phone) [14, 15]. However, the
sensitive nature of biometrics often dictates that these mod-
els run on-device. Mobile sensing requires the use of ef-
ficient networks that can be run in near-real-time without
significant computational limitations.

Future Work. Future work entails the evaluation of
BigSmall on resource constrained platforms such as mobile
devices and embedded processors. We also plan to train
BigSmall on videos with dynamic backgrounds (as BP4D+
has blank background), and utilize additional data augmen-
tation techniques to help build a more robust embedding.
Finally, we intend to explore the use of different model
backbones for both the Big and Small branches.

H. Other Discussions
H.1. Task Specifications of WTSM

We find that an early, preprint version of [7]
(arxiv.org/abs/1811.08383v1) also explored the use of a
temporal shift module that wraps features to fill zeroed
fields. This “circulant shift” TSM was found to under-
perform the zero-padded TSM for full video understand-
ing tasks (e.g., activity recognition). In contrast, our Wrap-
ping Temporal Shift Module (WTSM) is designed to build
a time-invariant mapping of input-output pairs (e.g., the re-
gression mapping from a frame to the PPG value at that
frame). Furthermore, the “circulant shift” was validated on
video-level understanding, where the number of consecu-
tive frames, N , is high. In contrast, our WTSM is designed
to build robust embeddings when N is extremely low - case
in which zero-padded would result in a detrimental propor-
tion of zeroed features.
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