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S1. Details of network architecture
As described in Sec. 3.4 of our main manuscript, our

ICF-SRSR adopts EDSR [34] as a baseline. However, to
handle both up-sampling and down-sampling operations
with the same network, we slightly modify the tail part of
the original EDSR architecture for each scaling factor, e.g.,
×2 and ×4, and their inverses. Fig. S1 shows the original
EDSR (Fig. S1a) and our modified EDSR (Fig. S1b). We
use the pixel-unshuffle operator to down-sample an input
image and generate the corresponding LLR image. For more
stable optimization, we use the detach operator of PyTorch
before passing the first outputs to the network again.

S2. Details of multi-scale augmentation strategy
As we mention in Sec. 4.4 of our main manuscript, we

can generate images with various scaling factors, e.g., ×2,
×4, and ×8 and their corresponding inverses from a single
LR input. Fig. S2a shows our multi-tail architecture, which
introduces a tail for each of the scale conditions. Then, we
pass the generated output images of different scales to the
model fθ with their inverse scaling factors. By doing so,
we reconstruct the input LR image as shown in Fig. S2b.
Accordingly, to train our model fθ under such a configura-
tion, we minimize the loss functions LCons and LColor defined
in Sec. 3.3 of our main manuscript between the generated
images and the input LR image.

S3. Evaluation by SSIM
We quantitatively show the results of our ICF-SRSR and

EDSR (LLR,LR) methods compared to other supervised
and unsupervised methods trained on DIV2K [1] dataset
and tested on the five standard benchmarks [4,64,38,24,39]
by SSIM metric in Tab. S1. According to the results, our
method outperforms unsupervised method [24] on both scal-
ing factors ×2 and ×4 and supervised method [9] on scaling
factor ×2 and is comparable with other methods.

*equal contribution

S4. Ablation on baseline model

We employ different models LIIF [9], EDSR [34],
RDN [71], and RCAN [70] as the baseline of our ICF-SRSR
framework. In the case of EDSR, RDN, and RCAN, we
develop the original network architecture to generate multi-
scale images by applying a tail for each scaling factor s and
its inverse 1/s, individually. In the case of LIIF, we lever-
age its continuous attribute to generate any scale of images
by sub-sampling from the reconstructed continuous image.
Tab. S2 shows the results of our ICF-SRSR with different
baselines. We illustrate that our method is model-agnostic
and can leverage different state-of-the-art (SOTA) baseline
models. We note that our method can achieve better perfor-
mance using advanced baselines except LIIF, which is not
trained with continuous scales due to the limitation of the
color loss LColor. We select the model EDSR as our baseline
due to its training time efficiency.

S5. Ablation on the hyperparameter λColor.

We conduct an ablation study to investigate the impor-
tance of our color loss LColor defined in Sec. 3.3 by chang-
ing its weight λColor. Specifically, We increase the weight
from 0.1 to 10 and report the performance of our ICF-SRSR
trained on the scale ×2 of test sets of both real-world dataset
RealSR [6] and synthetic datasets Set5 [4] and DIV2K [1]
validation in Tab. S3. The results indicate that λColor = 0.2
achieves the best performance on different datasets.

S6. Comparison with DASR

We follow the official implementation of DASR [53]
and train it using 1) HR images of DIV2K, 2) HR im-
ages of RealSR-V3, and 3) LR images of RealSR-V3 (self-
supervised) and compare the results with our self-supervised
method ICF-SRSR in Tab. S4. The results demonstrate the
superiority of our method to effectively learn from LR im-
ages compared to the DASR method.
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(a) Original EDSR.
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(b) Our modified EDSR for our ICF-SRSR.

Figure S1. The network architecture of our modified EDSR.
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(a) Multi-tail modified EDSR.
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(b) Multi-scale augmentation strategy.

Figure S2. The overview of our multi-scale augmentation strategy. (a) Our multi-tail EDSR for ×2, ×4, ×8 and their inverse scaling
factors. (b) An overview of the proposed multi-scale augmentation.

S7. Noise-free results

In Sec. 4.2 of our main manuscript, we note that the
ground-truth images of Set5 [4] and Set14 [64] datasets are
noisy while our SR images are noise-free. We show the
difference between our SR images and the noisy ground-
truth images in Fig. S3. The results prove our claim and
show that we can restore SR images without any noise.

S8. Complicated down-sampling degradations

As we show in Sec. 4.3 of our main manuscript, the
proposed method can learn from real-world datasets with un-
known degradations (real LR usually includes complicated
degradations). For example, we can train our model fθ on
images from RealSR-V3 [6] and DRealSR [59] datasets di-
rectly and achieve promising results. Furthermore, we train
and test our method ICF-SRSR on a dataset with more com-
plicated degradations generated by the Real-ESRGAN [55]
down-sampling strategy. We note that the generated LR
images by the Real-ESRGAN [55] down-sampling model

are synthesized by a sequence of classical degradations such
as blur, resize, noise, JPEG compression, and artifacts to
simulate more practical degradations. Fig. S4 demonstrates
that our method ICF-SRSR can perform ×2 SR faithfully
even on images with mild noise and artifacts.

S9. Visualization of the generated images

In Fig. S5 and Fig. S6, we visualize the generated down-
sampled (LLR) and up-sampled (SR) images by our ICF-
SRSR framework for different scaling factors ×2 and ×4,
respectively on various benchmark datasets Set14 [64],
BSD100 [38], and Urban100 [24] and also real-world dataset
RealSR-V3 [6]. We further restore the down-sampled LR
images given HR images for scaling factor ×2 of Canon
and Nikon sets from the RealSR-V3 [6] dataset as shown
in Fig. S7. The comparison demonstrates that the generated
down-sampled LR images by our self-supervised method
ICF-SRSR look similar to the real LR images, validating the
ability of our method to synthesize realistic LR-HR image
pairs. Such generated paired images LR-HR are useful to



Supervision Method Set5 Set14 BSD100 Urban100 Manga109
×2/×4 ×2/×4 ×2/×4 ×2/×4 ×2/×4

Bicubic 0.929/0.810 0.868/0.702 0.843/0.667 0.840/0.657 0.933/0.789

Supervised

VDSR [28] 0.959/0.884 0.912/0.768 0.896/0.725 0.914/0.752 0.975/0.887
EDSR [34] 0.960/0.898 0.919/0.787 0.901/0.742 0.935/0.803 0.977/0.915
CARN [2] 0.959/0.894 0.916/0.781 0.897/0.735 0.925/0.784 0.976/0.908
RCAN [70] 0.961/0.900 0.921/0.788 0.902/0.743 0.938/0.806 0.978/0.917
RDN [71] 0.961/0.899 0.921/0.787 0.901/0.741 0.935/0.802 0.978/0.915
DRN-S [20] 0.960/0.901 0.910/0.790 0.900/0.744 0.920/0.807 0.980/0.919
LIIF [9] 0.933/0.898 0.882/0.788 0.871/0.742 0.905/0.805 - / -
ELAN [69] 0.962/0.902 0.922/0.791 0.903/0.745 0.939/0.816 0.979/0.922

Unsupervised
SelfExSR [24] 0.953/0.861 0.903/0.751 0.885/0.710 0.897/0.740 0.968/0.718
ZSSR [46] 0.957/0.879 0.910/0.765 0.892/0.721 0.894/0.682 0.957/0.813
MZSR [48] 0.956/ - - / - 0.892/ - 0.909/ - - / -

Self-supervised
ICF-SRSR (Ours) 0.956/0.874 0.908/0.760 0.888/0.715 0.910/0.740 0.970/0.872
EDSR (LLR,LR) (Ours) 0.957/0.876 0.909/0.763 0.889/0.717 0.911/0.745 0.971/0.876

Table S1. Quantitative comparisons of different methods on synthetic datasets by SSIM. We compare our ICF-SRSR with several
supervised and unsupervised methods on the five standard benchmark datasets [4, 64, 38, 24, 39] on scales ×2 and ×4. ICF-SRSR refers to
our self-supervised method, while EDSR (LLR,LR) is the model EDSR trained on our generated pairs (LLR,LR) of the DIV2K dataset. We
also note that MZSR does not report SSIM for ×4 SR in the original paper.

Baseline Set5 Set14 BSD100 Urban100 DIV2K

ICF-SRSR (LIIF) 36.46 32.39 31.18 29.74 34.52
ICF-SRSR (EDSR) 37.01 32.86 31.54 30.39 35.19
ICF-SRSR (RDN) 37.03 32.87 31.56 30.42 35.18
ICF-SRSR (RCAN) 37.12 32.92 31.59 30.50 35.21

Table S2. Evaluation of our ICF-SRSR with different baselines by PSNR metric on scale ×2.

λColor Canon Nikon Set5 DIV2K

0.1 30.62 29.97 36.24 35.03
0.2 30.67 29.99 36.41 35.02
1 30.63 30.02 36.38 34.93
10 30.61 29.98 36.35 34.82

Table S3. Ablation on the hyperparameter λColor.

Method Self-Supervised Set Canon(×2) Canon(×4) Nikon(×2) Nikon(×4)

DASR [53] DIV2K (HR) 30.66 25.98 29.74 25.25
DASR [53] RealSR-V3 (HR) 30.76 26.09 30.15 25.94

DASR [53] RealSR-V3 (LR) 30.68 25.38 30.08 25.13
ICF-SRSR RealSR-V3 (LR) 30.98 26.26 30.31 25.89

Table S4. Quantitative comparison with DASR [53] method trained on different training datasets.

train other off-the-shelf supervised methods, as evident in
Tab. 6 of our main manuscript.

S10. Training on a single image
In Sec. 4.4 of our main manuscript, we show that our

method ICF-SRSR can learn to restore SR images by train-
ing on a small dataset and even a single image as shown in
Fig. 1. We show more samples to illustrate the ability of
our method to learn from only a single image. Therefore,
we train and evaluate our ICF-SRSR model on a single LR
image from the test set of the RealSR-V3 [6] dataset cap-

tured by the Nikon camera for scaling factor ×2. Our results
in Fig. S8 demonstrate that our method can restore an SR
image by training the model on only the same image. Fur-
thermore, our result for the single-image case is not only on
par with the multi-image case but also shows better perfor-
mance for some samples in terms of PSNR metric and visual
appearance. This attribute makes our method more practical
in real-world scenarios where there are not many sample
images for training. Moreover, we train and evaluate our
self-supervised method ICF-SRSR on a single real-world
smartphone photo and show the results in Fig. S9.
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Figure S3. Visualization of noise-free super-resolved images on scale ×2.
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Figure S4. Visualization of SR performance on images with more complicated down-sampling degradations.
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Figure S5. Qualitative comparisons of the generated images (LLR and SR) by ICF-SRSR for scale ×2.
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Figure S6. Qualitative comparisons of the generated images (LLR and SR) by ICF-SRSR for scale ×4.
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Figure S7. Qualitative comparisons of the real LR images and our generated LR images given HR images.
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Figure S8. Qualitative SR comparisons on single and multiple training images for scale ×2.



Input (LR)

Input (LR) SR (Ours)

Input (LR) SR (Ours)

Input (LR)

Input (LR) SR (Ours)

Input (LR) SR (Ours)

Input (LR)

Input (LR) SR (Ours)

Input (LR) SR (Ours)

Input (LR)

Input (LR) SR (Ours)

Input (LR) SR (Ours)

Figure S9. SR results on single training images from our captured images with scale ×2.


