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1. Teaser Figure
Images used in the teaser figure are from the SVTP

dataset at brightness level 0.4 and random Poisson-Gaussian
noise level 0.25.

2. Architecture
2.1. Network design

One can get reasonable recovery of low-light signal by
scaling up low-light images. However, in scaling up low-
light images, the noise is also amplified, and this is apparent
in the scaled inputs visualized in Figure 4 of the main paper.
We wanted to reconstruct fine details without noise ampli-
fication from a single image, so we opt to use a generative
model.

We tested ADM [5] as an alternative to DDPM and found
instabilities in training. We also tested a training patch res-
olution of 64 × 64 and found that it worked comparably,
with slightly longer training times. We choose not to train a
GAN such as CycleGAN [29] or Pix2Pix [6] because there
is no large paired dataset of low-light/well-lit pairs, which
would make training a GAN especially unstable.

2.2. Network conditioning

We use a U-Net [16] as the base of our DDPM. We
use the U-Net as implemented in [19], which consists of
3 “down-blocks” and 3 “up-blocks” with skip connections
between them. The network uses positional embeddings, 4
residual blocks per resolution, and per-resolution multipli-
ers of [2,2,2]. The network has a base 128 number of chan-
nels, and a dropout factor of 0.10. We use the weighting
of the L2 loss as prescribed by Karras et al. [8] and apply
a fixed scalar weight to the perceptual component (LPIPS
[26]) of our custom loss function.

Figure 1. Inference without exposure and white balancing con-
straints. Reconstructions show patch-to-patch inconsistencies in
exposure levels and white balancing if we perform inference on
individual patches and stitch them together or we do not perform
additional ILVR conditioning in DiD.

We show examples of patch-to-patch inconsistencies ob-
served without proper conditioning in Figure 1. Using a
multi-scale approach with ILVR [3], we can mitigate these
issues to reconstruct a coherent image. Using ILVR [3] at
every denoising step led to blurring, but applying ILVR to 6
of the 18 steps was sufficient. For our loss, we empirically
found that λ = 5 worked well. Before training, we apply
EDM [8] preconditioning.

3. Training and Inference
3.1. Low-light datasets

It is challenging to find large real low-light training
datasets. Multiple works have demonstrated accurate noise
modeling for low-light [1, 24], but it remains difficult to
model the loss of scene content and color in dim lighting.
We opt to use the LOL dataset because it remains one of the
most popular choices for low-light training [28], allowing
for easier comparison against SOTA.

3.2. Data preprocessing

For tail-normalization, the exact root number and divi-
sion number may vary from dataset to dataset. We find that
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Figure 2. LOL dataset inconsistencies. There is overlap in scenes
between the LOL training and test datasets, and the well-lit test
images are significantly more contrasted than the well-lit training
set images.

our choice of fourth root and dividing by two after z-scoring
was suitable for the LOL [22], Seeing in the Dark [2], and
a modified Seeing in the Dark [25] dataset.

Among low-light datasets, LOL is the most popular to
train and test on after custom datasets as found in a survey
of low-light reconstruction methods [28]. However, there
is significant overlap in scenes from the train and test set,
and for unknown reasons, the test set ground truths have
their color contrast raised, as seen in Figure 2. This con-
trast raise makes it challenging to get an accurate sense of
performance. We report quantitative results on the LOL test
set for comparison sake, but believe that our image quality
is reflective of realistic coloring as shown in the training set.

For LOL, we perform preprocessing before training.
First, we center crop the image to be 256 × 256. We then
convert the image from sRGB space to linear space. We
perform data normalization using a mean and standard de-
viation found in linear space on a random sample of 30 im-
ages. After tail-normalizing our data, we then train with
images in the range [−1, 1]. Upon inference, we unnormal-
ize the data and convert the image from linear space back
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Figure 3. Metrics are sensitive to exposure levels. There is a sig-
nificant drop in performance once exposure levels begin to change,
even though content is the same. The brightness represented here
is the scaled V value in the HSV-converted image.

to sRGB space for visualization. We compute all metrics in
sRGB space. We note that metrics are sensitive to different
exposure levels despite having the same content. We show
this sensitivity by scaling down the brightness of the LOL
test dataset and computing PSNR, SSIM, and LPIPS across
different brightness levels (Fig. 3).

3.3. Inference details

For inference, we apply 18 sampling steps. For s = 0,
we do not apply ILVR. For s = 1, 2, 3, we apply ILVR to
the first 6 steps, using the low-frequency content from the
previous scale’s prediction. To filter low-frequency content,
we downsample and upsample respectively, using bilinear
interpolation with anti-aliasing. We also tested numerous
different filters (Lanczos, cubic, and nearest) and found no
significant difference in performance. We tested using more
inference steps (N = 100) and found only minor changes
in performance (PSNR: +0.120, SSIM: −0.002, LPIPS:
−0.011).

4. Experiments
4.1. Baseline methods

LLFlow [21] is non-deterministic in theory and deter-
ministic in practice. The method uses a fixed latent feature,
which leads to a deterministic result. By changing the latent
feature, one can get different results due to the one-to-one
mapping of normalizing flows. However, because the re-
sults from different latents are not perceptually obvious, we
maintain a fixed latent feature. This choice may differ in
cases where there is more training data. For DDRM [9],
we scale up the brightness of LOL images by a factor of
6 to produce a brighter image (with amplified noise), and
denoise the image using DDRM pretrained on ImageNet.
We train an LDM [15] from scratch using LOL and use 200
steps as prescribed.

We show more qualitative results from the LOL test
dataset in Figure 4. DiD requires longer inference times
than LLFlow on average due to the number of inference
steps in the reverse diffusion process. The same can be said



about LDM. As faster sampling methods are being devel-
oped, as mentioned in our main paper, we believe the infer-
ence time for diffusion models can only be improved while
maintaining better quality reconstructions than those from
LLFlow.

4.2. Ablation studies

We clarify the term model-to-scales ratio. A 4:1 model-
to-scales ratio means that we trained 4 models. Each model
is trained on 1 scale. An example of the 4 models using a
4:1 to ratio is as follows:

• Model A is trained on 32 × 32 images that are down-
sampled versions of the 256× 256 low-light measure-
ment.

• Model B is trained on 32 × 32 patches that are taken
from a 64×64 image (which is a downsampled version
of the 256× 256 low-light measurement).

• Model C is trained on 32 × 32 patches that are taken
from a 128×128 image (which is a downsampled ver-
sion of the 256× 256 low-light measurement).

• Model D is trained on 32 × 32 patches that are taken
from the 256× 256 low-light measurement.

A 2:1 ratio means we trained 2 models. Each model is
trained on 1 scale. An example of the 2 models using a
2:1 to ratio is as follows:

• Model A is trained on 32 × 32 images that are down-
sampled versions of the 256× 256 low-light measure-
ment.

• Model B is trained on 32 × 32 patches that are taken
from the 256× 256 low-light measurement.

A 1:2 ratio means we trained 1 model with 2 scales. The
model is trained on 32×32 patches that either are entire im-
ages from downsampling the low-light measurement from
256× 256 to 32× 32 or are 32× 32 patches extracted from
the original 256× 256 low-light measurement.

We provide additional ablations highlighted in Table 1
and show qualitative results for top-performing ablations
in Figure 5. All ablations use ILVR [3] during inference
unless specified otherwise. For ablations, we report met-
rics computed on a randomly selected reconstruction rather
than the best of 10 reconstructions. We include an ablation
study in which we attempt to refine the predictions in pixel
space with a lightweight CNN. This refinement network has
3 Conv2D+LeakyRELU layers with the following channel
sizes [3, 128, 3]. We use an L2 loss and Adam optimizer
for 10,000 iterations. This CNN operates as a determin-
istic network to improve predictions. We train the CNN
on 256 × 256 predictions from a pretrained DiD and com-
pare the reconstruction to 256 × 256 ground truth images.

However, we find that because the LOL test dataset has a
significant distribution shift from its training dataset, there
is an upper limit to how much the CNN can improve re-
sults. We observe comparable SSIM (+0.06), worse PSNR
(-0.47), and comparable LPIPS (+0.01). Since the perfor-
mance here was overall comparable, we instead report our
original method DiD as part of our core contribution with-
out any additional trainable parameters.

5. Scene Text Recognition

We simulate low light in scene text recognition by con-
verting the images from RGB to HSV. We then scale the V
channel by a factor less than one (in our simulations, we
use 0.4 or 0.5), following [11,27] in simulating images un-
der differing light conditions. We follow the noise model
from Mildenhall et al. [12], which model Poisson-Gaussian
noise as a Gaussian with zero-mean and signal-dependent
variances. We then convert the image back to RGB and add
Poisson-Gaussian noise with a specified standard deviation
for the Gaussian distribution and signal-dependent variance
for the Poisson distribution. We test the following datasets
which display a wide range of capture quality:

• IIIT5k-Words (IIIT5k) [13] which contains 3000
test images, most of which are of acceptable quality.

• ICDAR2013 (IC13) [7] which consists of 1015 im-
ages for testing. The ICDAR 2013 and 2015 datasets
are similar in text regularity and conditions.

• Street View Text (SVT) [20] which consists of 647
images, many of which are severely degraded by blur,
noise, and low resolution.

• SVT-Perspective (SVTP) [14] which contains 645
images, with most suffering from heavy perspective
distortion.

For each dataset, we sample 30 images to find the mean
and standard deviation needed for tail-normalization. For
the text processing, we additionally scale our recovered im-
age by 3. Since our method recovers an arbitrary exposure
level without noise, scaling the image should not amplify
any noise. We show the performance of each method on
individual datasets (a decomposition of Figure 5 from our
main paper) in Figure 6. We also show more qualitative
results of different brightness and noise levels in Figure 7.

6. Reconstruction on Other Datasets
Many real low-light datasets are task datasets with no

well-lit ground truth (Dark Zurich [17], ACDC [18], Night-
time Driving [4], CODaN [10]), so we cannot provide quan-
titative results on reconstruction performance.



Table 1. Results from all ablation studies. Models/scales refers to the number of trained models and the number of scales for which each
model is trained. Noise refers to the addition of noise on the conditioning image. LPIPS refers to an additional LPIPS loss. Data refers
to data normalization. Cond. refers to adding an upsampled scale 0 prediction to the conditioning input. Highlighted in blue are ablations
which were not included in our main paper. We highlight the best and second best results using bold and underlined text, respectively.

ID Models/scales Noise LPIPS Data Cond. PSNR↑ SSIM↑ LPIPS↓

A 1 : 4 ✗ ✗ ✗ ✗ 16.26 0.57 0.48
B 1 : 4 ✗ ✓ ✓ ✗ 19.56 0.74 0.35
C 1 : 4 ✓ ✓ ✗ ✗ 16.94 0.63 0.46
D 1 : 4 ✓ ✓ ✓ ✗ 17.62 0.74 0.31
E 4 : 1 ✓ ✗ ✓ ✗ 19.63 0.80 0.14
F 1 : 2 ✓ ✓ ✓ ✗ 17.49 0.72 0.33
G 1 : 2 ✓ ✓ ✓ ✓ 18.37 0.73 0.33
H 2 : 1 ✓ ✓ ✓ ✓ 19.35 0.72 0.31
I 1 : 4 ✓ ✗ ✓ ✗ 17.78 0.74 0.31
J 2 : 1 ✓ ✓ ✓ ✗ 19.32 0.72 0.32
K DiD (with CNN) ✓ ✓ ✓ ✓ 20.53 0.88 0.15
L DiD (no ILVR) ✓ ✓ ✓ ✓ 17.78 0.72 0.36
M DiD ✓ ✓ ✓ ✓ 21.00 0.82 0.14

Of the real low-light task datasets, only DarkFace [23]
has been used for qualitative evaluation by 2 of 8 baselines
(Zero-DCE and RUAS). We test our LOL-trained model
on DarkFace (Fig. 8), and found DiD to be highly robust
against unseen, real test data, while LLFlow leaves an unre-
alistic red tint on images.

Our method could also be applied for other high-level
downstream tasks such as segmentation and classification.
However, our contributions are primarily in reconstructing
high-frequency details, of which are not completely neces-
sary for succeeding at segmentation and classification tasks.
We focus on instead on a task that requires high-frequency
details, and thus shows the strengths of diffusion models.

References
[1] Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen,

Dillon Sharlet, and Jonathan T Barron. Unprocessing images
for learned raw denoising. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11036–11045, 2019. 1

[2] Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun.
Learning to see in the dark. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3291–3300, 2018. 2

[3] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune
Gwon, and Sungroh Yoon. Ilvr: Conditioning method for
denoising diffusion probabilistic models. arXiv preprint
arXiv:2108.02938, 2021. 1, 3

[4] Dengxin Dai and Luc Van Gool. Dark model adaptation:
Semantic image segmentation from daytime to nighttime.
In 2018 21st International Conference on Intelligent Trans-
portation Systems (ITSC), pages 3819–3824. IEEE, 2018. 3

[5] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Informa-
tion Processing Systems, 34:8780–8794, 2021. 1

[6] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1125–
1134, 2017. 1

[7] Dimosthenis Karatzas, Faisal Shafait, Seiichi Uchida,
Masakazu Iwamura, Lluis Gomez i Bigorda, Sergi Robles
Mestre, Joan Mas, David Fernandez Mota, Jon Almazan Al-
mazan, and Lluis Pere De Las Heras. Icdar 2013 robust read-
ing competition. In 2013 12th International Conference on
Document Analysis and Recognition (ICDAR), pages 1484–
1493. IEEE, 2013. 3

[8] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. arXiv preprint arXiv:2206.00364, 2022. 1

[9] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming
Song. Denoising diffusion restoration models. arXiv preprint
arXiv:2201.11793, 2022. 2

[10] Attila Lengyel, Sourav Garg, Michael Milford, and Jan C.
van Gemert. Zero-shot domain adaptation with a physics
prior. 2021. 3

[11] Feifan Lv, Yu Li, and Feng Lu. Attention guided low-
light image enhancement with a large scale low-light sim-
ulation dataset. International Journal of Computer Vision,
129(7):2175–2193, 2021. 3

[12] Ben Mildenhall, Jonathan T Barron, Jiawen Chen, Dillon
Sharlet, Ren Ng, and Robert Carroll. Burst denoising with
kernel prediction networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2502–2510, 2018. 3

[13] Anand Mishra, Karteek Alahari, and CV Jawahar. Scene text
recognition using higher order language priors. In British
Machine Vision Conference (BMVC). BMVA, 2012. 3

[14] Trung Quy Phan, Palaiahnakote Shivakumara, Shangxuan
Tian, and Chew Lim Tan. Recognizing text with perspective
distortion in natural scenes. In Proceedings of the IEEE In-



ternational Conference on Computer Vision, pages 569–576,
2013. 3

[15] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 2, 9

[16] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 234–241.
Springer, 2015. 1

[17] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Map-
guided curriculum domain adaptation and uncertainty-aware
evaluation for semantic nighttime image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
44(6):3139–3153, 2020. 3

[18] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Acdc:
The adverse conditions dataset with correspondences for se-
mantic driving scene understanding. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 10765–10775, 2021. 3

[19] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. arXiv preprint arXiv:2011.13456, 2020. 1

[20] Kai Wang, Boris Babenko, and Serge Belongie. End-to-end
scene text recognition. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1457–1464.
IEEE, 2011. 3

[21] Yufei Wang, Renjie Wan, Wenhan Yang, Haoliang Li, Lap-
Pui Chau, and Alex Kot. Low-light image enhancement with
normalizing flow. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 2604–2612, 2022.
2, 9

[22] Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying
Liu. Deep retinex decomposition for low-light enhancement.
arXiv preprint arXiv:1808.04560, 2018. 2

[23] Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu.
Deep retinex decomposition for low-light enhancement. In
British Machine Vision Conference, 2018. 4

[24] Kaixuan Wei, Ying Fu, Jiaolong Yang, and Hua Huang. A
physics-based noise formation model for extreme low-light
raw denoising. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2758–
2767, 2020. 1

[25] Ke Xu, Xin Yang, Baocai Yin, and Rynson WH Lau.
Learning to restore low-light images via decomposition-and-
enhancement. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2281–
2290, 2020. 2

[26] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 586–595, 2018. 1

[27] Yu Zhang, Xiaoguang Di, Bin Zhang, Ruihang Ji, and Chun-
hui Wang. Better than reference in low-light image enhance-
ment: conditional re-enhancement network. IEEE Transac-
tions on Image Processing, 31:759–772, 2021. 3

[28] Shen Zheng, Yiling Ma, Jinqian Pan, Changjie Lu, and
Gaurav Gupta. Low-light image and video enhancement:
A comprehensive survey and beyond. arXiv preprint
arXiv:2212.10772, 2022. 1, 2

[29] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2223–
2232, 2017. 1



Scaled Input LDM KinD++ LLFlow DiD (Ours) Ground Truth

PSNR: 17.25
SSIM: 0.70
LPIPS: 0.19

PSNR: 16.18
SSIM: 0.77
LPIPS: 0.21

PSNR: 25.53
SSIM: 0.91
LPIPS: 0.10

PSNR: 18.70
SSIM: 0.89
LPIPS: 0.11

PSNR: 20.25
SSIM: 0.89
LPIPS: 0.12

PSNR: 15.26
SSIM: 0.73
LPIPS: 0.28

PSNR: 19.31
SSIM: 0.85
LPIPS: 0.26

PSNR: 14.84
SSIM: 0.86
LPIPS: 0.18

PSNR: 26.14
SSIM: 0.96
LPIPS: 0.09

PSNR: 18.82
SSIM: 0.92
LPIPS: 0.13

PSNR: 7.81
SSIM: 0.27
LPIPS: 0.57

PSNR: 21.00
SSIM: 0.88
LPIPS: 0.18

PSNR: 19.17
SSIM: 0.81
LPIPS: 0.22

PSNR: 20.36
SSIM: 0.92
LPIPS: 0.12

PSNR: 17.38
SSIM: 0.80
LPIPS: 0.18

PSNR: 14.07
SSIM: 0.72
LPIPS: 0.24

PSNR: 20.61
SSIM: 0.92
LPIPS: 0.19 

PSNR: 17.51
SSIM: 0.93
LPIPS: 0.13

PSNR: 19.80
SSIM: 0.95
LPIPS: 0.11

PSNR: 22.85
SSIM: 0.95
LPIPS: 0.09

PSNR: 21.16
SSIM: 0.75
LPIPS: 0.19

PSNR: 18.79
SSIM: 0.75
LPIPS: 0.20

PSNR: 21.65
SSIM: 0.82
LPIPS: 0.11

PSNR: 25.39
SSIM: 0.84
LPIPS: 0.07

PSNR: 17.98
SSIM: 0.77
LPIPS: 0.10

Figure 4. Qualitative results of baselines from more of the LOL test dataset. We show results from top-performing low-light baselines.
DiD reconstruction is competitive with reconstructions from other methods. We scale the input by a factor of 5 for visualization.
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Figure 5. Qualitative results of ablations of the LOL test dataset. We show results from top-performing ablations as described Table
1. The combination of all described components, DiD performs the best robustly across images. We scale the input by a factor of 5 for
visualization.
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Figure 6. Quantitative performance on STR datasets. We show performances of each method on each individual dataset at two levels of
brightness and a range of Poisson-Gaussian noise levels using text recognition metrics (Word Accuracy and 1-Normalized Edit Distance)
and KID. DiD performs robustly against noisy and dark conditions and exceeds in all these metrics.
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Figure 7. Qualitative results of STR performance on SVT dataset. We show results of LDM [15], LLFlow [21], and DiD on different
examples in one of the four STR datasets. DiD is able to recover edges and high-frequency detail better in noisy and dark conditions to
permit more accurate text recognition predictions than other methods can.
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Figure 8. Reconstruction of DarkFace data, a real low-light task dataset. DiD provides a realistic reconstruction of real low-light
images, while LLFlow provides an unrealistic reddish tint. Both reconstructions could be used for face recognition, but DiD provides more
aesthetically pleasing reconstructions.
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