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In this supplementary material, we first provide a de-
tailed proof for our theorem on distributional variance,
as outlined in Section 1. Next, in Section 2, we de-
tail more about our experimental settings, covering both
the ColoredMNIST synthetic dataset [1] and the extensive
benchmarks from the DomainBed suite [5] in the main text.
Additional ablation studies and discussions on our proposed
method are given in Section 3. Finally, Section 4 provides
domain-specific out-of-domain accuracies for each dataset
within the DomainBed suite.

1. Theoretical Results

We provide the proof for the theorem on distributional
variance discussed in the main paper. We revisit the concept
of kernel mean embedding [11] to express the risk distribu-
tion Te of domain e. Particularly, we represent Te through
its embedding, µTe , in a reproducing kernel Hilbert space
(RKHS) denoted as H. This is achieved by using a feature
map ϕ : R → H below:

µTe
:= ERe∼Te

[ϕ (Re)] (1)
= ERe∼Te

[k (Re, ·)] (2)

where a kernel function k (·, ·) : R × R → R is introduced
to bypass the explicit specification of ϕ.

Theorem. [7] Denote T = 1
m

∑m
e=1 Te the probability

distribution over the risks of all samples in the entire train-
ing set, or equivalently, the set of all m domains. Given
the distributional variance VH ({T1, ..., Tm}) is calculated
with a characteristic kernel k, VH ({T1, ..., Tm}) = 0 if
and only if T1 = ... = Tm (= T ).

Proof. In our methodology, we employ the RBF kernel,
which is characteristic in nature. As a result, the term
∥µTe

− µT ∥2H acts as a metric within the Hilbert space
H [7]. Importantly, this metric reaches zero if and only
if (Te = T ) [12]. Let’s consider the distributional variance,
VH ({T1, ..., Tm}), which is defined below:

VH =
1

m

m∑
e=1

∥µTe
− µT ∥2H (3)

This variance becomes zero if and only if ∥µTe − µT ∥2H =
0 for each e. This logically implies that (Te = T ) for all e,
leading to (T1 = T2 = ... = Tm).

Conversely, we assume that (T1 = T2 = ... = Tm).
Given this condition, for any e, it follows that:

µT =
1

m

m∑
e=1

µTe = µTe (4)

which implies

∥µTe
− µT ∥2H = 0. (5)

Consequently, by the given definition of distribu-
tional variance, we have: VH ({T1, ..., Tm}) =
1
m

∑m
e=1 ∥µTe − µT ∥2H = 0. This completes the

proof.

2. More implementation details
For our experiments, we leveraged the PyTorch Do-

mainBed toolbox [3, 5] and utilised an Ubuntu 20.4
server outfitted with a 36-core CPU, 767GB RAM, and
NVIDIA V100 32GB GPUs. The software stack included
Python 3.11.2, PyTorch 1.7.1, Torchvision 0.8.2, and Cuda
12.0. Additional implementation details, beyond the hyper-
parameters discussed in the main text, are elaborated below.

2.1. ColoredMNIST

In alignment with [3], we performed experiments on the
ColoredMNIST dataset, the results of which are detailed
in Table 1 in the main paper. We partitioned the original
MNIST training dataset into distinct training and validation
sets of 25,000 and 5,000 samples for each of two training
domains, respectively. The original MNIST test set was
adapted to function as our test set. Particularly, we synthe-
sised this test set to introduce a distribution shift: red digits



have only a 10% probability of being classified as “zero”,
compared to 80% and 90% in the training sets for different
domains. Besides the hyper-parameters highlighted in the
main paper, we also leveraged a cosine annealing scheduler
to further optimise the training process like other baselines.

For our RDM method, we constrained the alignment
to focus only on the first two empirical moments (mean
and variance) of Tw and T . We experimented with
five different penalty weight values for λ in the range of
{500, 1000, 2500, 5000, 10000}, running each experiment
ten times and varying λ. The reported results are the av-
erage accuracies and their standard deviations over these 10
runs, all measured on a test-domain test set. We adhered to
test-domain validation for model selection across all meth-
ods, as recommended by [5]. We reference results for other
methods from [3].

2.2. DomainBed

2.2.1 Description of benchmarks

For our evaluations, we leveraged five large-scale bench-
mark datasets from the DomainBed suite [5], comprising:

• VLCS [4]: The dataset encompasses four photo-
graphic domains: Caltech101, LabelMe, SUN09,
VOC2007. It contains 10,729 examples, each with di-
mensions (3, 224, 224), and spans five distinct classes.

• PACS [6]: The dataset includes 9,991 images from
four different domains: Photo (P), Art-painting (A),
Cartoon (C), and Sketch (S). These domains each have
their own unique style, making this dataset particularly
challenging for out-of-distribution (OOD) generalisa-
tion. Each domain has seven classes.

• OfficeHome [13]: The dataset features 15,500 images
of objects commonly found in office and home set-
tings, categorised into 65 classes. These images are
sourced from four distinct domains: Art (A), Clipart
(C), Product (P), and Real-world (R).

• TerraIncognita [2]: The dataset includes 24,788
camera-trap photographs of wild animals captured at
locations {L100,L38,L43,L46}. Each image has di-
mensions (3, 224, 224) and falls into one of 10 distinct
classes.

• DomainNet [8]: The largest dataset in DomainBed,
DomainNet, contains 586,575 examples in di-
mensions (3, 224, 224), spread across six domains
{clipart, infograph, painting, quickdraw, real, sketch}
and encompassing 345 classes.

2.2.2 Our implementation details

To ensure rigorous evaluation and a fair comparison with
existing baselines [3, 9], we conducted experiments on five

datasets from the DomainBed suite, the results of which are
elaborated in Table 2 of the main text. In alignment with
standard practices, we optimised hyper-parameters for each
domain through a randomised search across 20 trials on the
validation set, utilising a joint distribution as specified in Ta-
ble 1. The dataset from each domain was partitioned into an
80% split for training and testing, and a 20% split for hyper-
parameter validation. A comprehensive discussion on the
hyper-parameters used in our experiments is provided be-
low. For each domain, we performed our experiments ten
times, employing varied seed values and hyper-parameters
within the specified range, and reported the averaged re-
sults with their standard deviations. We reference results
for other methods from [3, 9]. We kindly refer readers to
our given source code for more detail.

In our methodology, we employed the MMD dis-
tance for aligning risk distributions Te and T , as
described in Section 4 of the main text. Utilis-
ing the RBF kernel, we compute the average MMD
distance across an expansive bandwidth spectrum
{0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000}, bypassing
the need for tuning this parameter.

Inspired by recent insights [3], we incorporated an initial
pre-training-with-ERM phase to further improve the OOD
performance. DomainNet, given its scale, requires longer
ERM pre-training; specific parameters for all datasets are
provided in Table 1. Our initial learning rate lies within
[1e-4.5, 1e-4], which adapts to [8e-6, 2e-5] post-ERM pre-
training. Incorporating additional variance regularisation
on Te and T proves beneficial for the PACS and VLCS
datasets. This approach constrains the induced risks to
fall within narrower, more optimal value ranges, facilitating
more effective risk distribution alignment. Optimal regular-
isation coefficients for this strategy are detailed in Table 1.

We maintain minimal dropout and weight decay, re-
serving our focus for risk distribution alignment. Optimal
batch sizes differ: [70, 100] for VLCS and OfficeHome, and
[30, 60] for TerraIncognita and DomainNet. Despite com-
putational constraints limiting our ability to test larger batch
sizes, the selected ranges yield robust performance across
datasets.

Regarding the matching coefficient λ in our objective,
most datasets work well within [0.1, 10.0], but DomainNet
prefers a narrower [0.1, 1.0] range. This fine-tuning is key,
especially for large-scale datasets, to balance risk reduction
and cross-domain alignment in the early training stages.

3. More ablation studies and analyses

3.1. Efficacy of DG matching methods

Table 2 compares the efficiency and effectiveness of var-
ious methods: Fish, CORAL, RDM with LRDM, and RDM
with L̂RDM across several benchmarks - PACS, VLCS, Of-



Parameter Dataset Default value Random distribution

steps All 5,000 5,000

learning rate All 5e-5 10Uniform(−4.5,−4)

dropout All 0 RandomChoice([0, 0.003, 0.03])

weight decay All 0 10Uniform(−8,−5)

batch size PACS / VLCS / OfficeHome 88 Uniform(70, 100)

TerraIncognita / DomainNet 40 Uniform(30, 60)

matching coefficient λ All except DomainNet 5.0 Uniform(0.1, 10.0)

DomainNet 0.5 Uniform(0.1, 1.0)

pre-trained iterations All except DomainNet 1500 Uniform(800, 2700)

DomainNet 2400 Uniform(1500, 3000)

learning rate after pre-training All 1.5e-5 Uniform(8e-6, 2e-5)

variance regularisation
coefficient

PACS / VLCS 0.004 Uniform(0.001, 0.007)

OfficeHome / TerraIncognita /
DomainNet

0 0

Table 1. Hyper-parameters, along with their default values and distributions, are optimised through random search across the five bench-
mark datasets.

Algorithm Training (s) Mem (GiB) Acc (%)

Fish 7,566 7.97 85.5

CORAL 4,485 21.81 86.2

RDM with LRDM 4,783 21.87 86.6

RDM with L̂RDM 4,214 21.71 87.2
(a) PACS

Algorithm Training (s) Mem (GiB) Acc (%)

Fish 13,493 7.97 77.8

CORAL 6,329 21.81 78.8

RDM with LRDM 9,441 21.87 77.8

RDM with L̂RDM 6,151 21.71 78.4

(b) VLCS

Algorithm Training (s) Mem (GiB) Acc (%)

Fish 9,035 7.97 68.6

CORAL 4,762 21.81 68.7

RDM with LRDM 5,467 21.87 67.0

RDM with L̂RDM 4,588 21.71 67.3

(c) OfficeHome

Algorithm Training (s) Mem (GiB) Acc (%)

Fish 6,019 4.08 45.1

CORAL 2,973 10.21 47.6

RDM with LRDM 4,040 10.17 47.1

RDM with L̂RDM 2,697 10.11 47.5

(d) TerraIncognita

Table 2. Comparison between Fish, CORAL, and two variants of our method in terms of the training time (seconds), memory usage per
iteration (GiB) and accuracy (%) on PACS, VLCS, OfficeHome and TerraIncognita.

ficeHome, and TerraIncognita. Notably, the approximate
variant, denoted as RDM with L̂RDM, stands out for its ex-
ceptional performance. This version emphasises the align-
ment of risk distribution for the worst-case domain and ex-
hibits both faster training times and improved accuracy over
its counterpart that optimises distributional variance, RDM
with LRDM. For instance, on the VLCS dataset, this variant

is trained in under an hour while achieving a 0.6% accuracy
boost.

When compared to the gradient-matching Fish method,
our approach demonstrates similar advantages but requires
additional memory to store MMD distance values. The
memory constraint is not unique to our method; CORAL
also encounters this limitation. However, RDM outper-



forms CORAL in both training time and memory usage,
especially evident on large-scale datasets like DomainNet.
This efficiency gain is noteworthy, given that CORAL’s in-
creased computational requirements arise from its handling
of high-dimensional representation vectors.

In terms of the accuracy, as confirmed by our main text,
RDM outperforms CORAL substantially on both PACS
and DomainNet, while maintaining competitiveness on Ter-
raIncognita and VLCS. On OfficeHome, although RDM
lags behind CORAL, we provide an in-depth explanation
for this behavior both in the main text and in the subsequent
section.

3.2. Decreased Performance on OfficeHome
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Figure 1. The notable gap between training and validation match-
ing loss on the OfficeHome dataset, excluding the OOD Art do-
main. Analysis begins after RDM completes 1,500 pre-training
iterations via ERM. Metrics recorded at every 15-iteration inter-
val.

In our evaluation, RDM generally surpasses competing
matching methods in OOD settings but faces challenges
in specific datasets like OfficeHome. The dataset’s limi-
tations are noteworthy: with an average of only 240 sam-
ples per class, OfficeHome has significantly fewer instances
per class than other datasets, which usually have at least
1,400. This limited sample size may constrain the model
from learning sufficiently class-semantic features or diverse
risk distributions, leading to overfitting on the training set.
To shed light on this issue, we present a visual analysis
in Figure 1. Starting from the 100th iteration, when we
perform the task of matching risk distributions, we note
that the training matching loss is already minimal, form-
ing a clear divergence with the validation matching loss.
While the training loss continues to converge to minimal
values, the validation loss remains inconsistent throughout
the training phase. This inconsistency showcases that the
limited diversity in OfficeHome’s risk distributions may in-

duce the model’s overfitting on training samples, reducing
its generalisation capabilities. Despite these constraints, our
method still outperforms other well-known baselines, such
as MLDG, VREx, and ERM, on OfficeHome.

3.3. Impact of batch size and matching coefficient

In our analysis, we closely examine how batch size
and the matching coefficient λ affect RDM’s performance
across four benchmark datasets: VLCS, OfficeHome, Ter-
raIncognita, and DomainNet. Consistent with our main text
findings on PACS, Figure 2 shows that using larger batch
sizes enhances the model’s generalisation by facilitating ac-
curate risk distribution matching. Similarly, Figure 3 high-
lights the importance of λ in improving OOD performance;
as λ increases, OOD performance generally improves.

We find optimal batch size ranges for each dataset:
VLCS and OfficeHome perform best with sizes between
[70, 100], while the larger datasets of TerraIncognita and
DomainNet benefit from a more limited range of [30, 60].
Even with computational limitations, these batch sizes lead
to strong performance. For most datasets, a λ value be-
tween [0.1, 10.0] is effective. In the case of DomainNet,
a smaller λ range of [0.1, 1.0] works well, balancing the
reduction of training risks and the alignment of risk distri-
butions across domains. This is particularly important for
large-scale datasets where reducing training risks is crucial
for learning predictive features, especially during the initial
phases of training.

3.4. Risk distributions

We present visualisations of risk distribution histograms
accompanied by their KDE curves for two datasets, PACS
and DomainNet, in Figures 4 and 5, respectively. These vi-
sualisations compare the risk distributions of ERM and our
proposed RDM method on the validation sets. Both figures
confirm our hypothesis that variations in training domains
lead to distinct risk distributions, making them valuable in-
dicators of domain differences.

On PACS, we observe that ERM tends to capture
domain-specific features, resulting in low risks within the
training domains. However, ERM’s substantial deviation
of the average risk for the test domain from that for the
training domains suggests sub-optimal OOD generalisation.
In contrast, our RDM approach prioritises stable, domain-
invariant features, yielding more consistent risk distribu-
tions and enhanced generalisation. This trend holds across
both two datasets, as our approach consistently aligns risk
distributions across domains better than ERM. This align-
ment effectively narrows the gap between test and training
domains, especially reducing risks for test domains.

These findings underscore the efficacy of our RDM
method in mitigating domain variations by aligning risk dis-
tributions, ultimately leading to enhanced generalisation.



16 32 48 64 80 96 112
Batch size

77.6

77.7

77.8

77.9

78.0

78.1

78.2

78.3

78.4

Ac
cu

ra
cy

 (%
)

(a) VLCS

16 32 48 64 80 96 112
Batch size

66.6

66.7

66.8

66.9

67.0

67.1

67.2

67.3

Ac
cu

ra
cy

 (%
)

(b) OfficeHome

16 24 32 40 48 56 64
Batch size

46.4

46.6

46.8

47.0

47.2

47.4

Ac
cu

ra
cy

 (%
)

(c) TerraIncognita

16 24 32 40 48 56 64
Batch size

42.6

42.8

43.0

43.2

43.4

Ac
cu

ra
cy

 (%
)

(d) DomainNet

Figure 2. The influence of batch size in our method on VLCS, OfficeHome, TerraIncognita and DomainNet.
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Figure 3. The influence of matching coefficient λ in our method on VLCS, OfficeHome, TerraIncognita and DomainNet.

4. More experimental results
We provide domain-specific out-of-domain accuracies

for each dataset within the DomainBed suite in Ta-
bles 3, 4, 5, 6, 7. In each table, the accuracy listed in each
column represents the out-of-domain performance when
that specific domain is excluded from the training set and
used solely for testing within the respective dataset. We
note that the per-domain results for Fish [10] are not avail-
able.
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Figure 4. Histograms with their KDE curves depicting the risk distributions of ERM and our RDM method across four domains on PACS.
Vertical ticks denote the mean values of all distributions.
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Figure 5. Histograms with their KDE curves depicting the risk distributions of ERM and our RDM method across six domains on Domain-
Net. Vertical ticks denote the mean values of all distributions.
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Algorithm clip info paint quick real sketch Avg

ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
MLDG 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
IRM 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
VREx 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
EQRM 56.1 ± 1.3 19.6 ± 0.1 46.3 ± 1.5 12.9 ± 0.3 61.1 ± 0.0 50.3 ± 0.1 41.0
Fish - - - - - - 42.7
Fishr 58.2 ± 0.5 20.2 ± 0.2 47.7 ± 0.3 12.7 ± 0.2 60.3 ± 0.2 50.8 ± 0.1 41.7
CORAL 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5
MMD 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4

RDM (ours) 62.1 ± 0.2 20.7 ± 0.1 49.2 ± 0.4 14.1 ± 0.4 63.0 ± 1.3 51.4 ± 0.1 43.4

Table 3. Domain-specific out-of-domain accuracy on DomainNet where the best results are marked as bold. Results of other methods are
referenced from [3, 10].

Algorithm A C P S Avg

ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
EQRM 86.5 ± 0.4 82.1 ± 0.7 96.6 ± 0.2 80.8 ± 0.2 86.5
Fish - - - - 85.5
Fishr 88.4 ± 0.2 78.7± 0.7 97.0 ± 0.1 77.8 ± 2.0 85.5
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6

RDM (ours) 88.4 ± 0.2 81.3 ± 1.6 97.1 ± 0.1 81.8 ± 1.1 87.2

Table 4. Domain-specific out-of-domain accuracy on PACS where the best results are marked as bold. Results of other methods are
referenced from [3, 10].

Algorithm C L S V Avg

ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
EQRM 98.3 ± 0.0 63.7 ± 0.8 72.6 ± 1.0 76.7 ± 1.1 77.8
Fish - - - - 77.8
Fishr 98.9 ± 0.3 64.0 ± 0.5 71.5 ± 0.2 76.8 ± 0.7 77.8
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5

RDM (ours) 98.1 ± 0.2 64.9 ± 0.7 72.6 ± 0.5 77.9 ± 1.2 78.4

Table 5. Domain-specific out-of-domain accuracy on VLCS where the best results are marked as bold. Results of other methods are
referenced from [3, 10].



Algorithm A C P R Avg

ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
EQRM 60.5 ± 0.1 56.0 ± 0.2 76.1 ± 0.4 77.4 ± 0.3 67.5
Fish - - - - 68.6
Fishr 62.4 ± 0.5 54.4 ± 0.4 76.2 ± 0.5 78.3 ± 0.1 67.8
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3

RDM (ours) 61.1 ± 0.4 55.1 ± 0.3 75.7 ± 0.5 77.3 ± 0.3 67.3

Table 6. Domain-specific out-of-domain accuracy on OfficeHome where the best results are marked as bold. Results of other methods are
referenced from [3, 10].

Algorithm L100 L38 L43 L46 Avg

ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
Mixup 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9
MLDG 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.7
GroupDRO 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2
IRM 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
VREx 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4
EQRM 47.9 ± 1.9 45.2 ± 0.3 59.1 ± 0.3 38.8 ± 0.6 47.8
Fish - - - - 45.1
Fishr 50.2 ± 3.9 43.9 ± 0.8 55.7 ± 2.2 39.8 ± 1.0 47.4
CORAL 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6
MMD 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2

RDM (ours) 52.9 ± 1.2 43.1 ± 1.0 58.1 ± 1.3 36.1 ± 2.9 47.5

Table 7. Domain-specific out-of-domain accuracy on TerraIncognita where the best results are marked as bold. Results of other methods
are referenced from [3, 10].
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