
VideoFACT: Detecting Video Forgeries Using Attention, Scene Context, and
Forensic Traces

Supplementary Material

Tai D. Nguyen Shengbang Fang Matthew C. Stamm
Drexel University

Philadelphia, PA, USA
{tdn47, sf683, mcs382}@drexel.edu

A. Dataset Creation

A.1. Set A: Standard Video Manipulations Datasets

In this section, we presents more details regarding the cre-
ation of the Standard Video Manipulations datasets used in
this paper, specifically, those used for training and validation
of our network - VCMS, VPVM, VPIM.

In order to generate samples for each of these datasets,
we first needed to make binary masks which specify the
to-be-manipulated regions in video frames/images. To facil-
itate this process, we created a library of 10 basic shapes:
rectangle, circle, ellipse, triangle, pentagon, heptagon, 5-
pointed star, 8-pointed star, 12-pointed star, and 18-pointed
star. Since we wanted to avoid our network overfitting to any
particular shapes, we further constructed complex compound
shapes by overlapping up-to three basic shapes in a random
manner. After the compound shapes for each mask were
finalized, it was randomly resized, randomly rotated, and
translated to a random location inside the mask’s boundary
(1080 × 1920). We note that masks with the manipulated
area greater than 75% of the total area were rejected and
regenerated using the same procedure.

With the binary masks ready, we then applied either splic-
ing operations (copying content from a source video/image
and pasting it into a destination video/image), or in-place
editing operation (manipulating each frames of a video or
image). With regards to in-place editing operations, we ma-
nipulated the regions specified by the mask with at least one
of the following operations: changing brightness, contrast,
saturation, and hue, adding random Gaussian blur, random
motion blur, random box blur, and random Gaussian noise.
We used the open-source differentiable computer vision li-
brary Kornia to perform these edits. The parameters used for
the perceptuall visible datasets (VPVM) and the perceptually
invisible datasets (VPIM) are listed in the Table B1.

Finally, we re-encoded the authentic video frames of
each authentic video into the set of authentic videos and the

Visible? Manip. Type Manip. Parameters Manip. Prob.

Yes

Brightness range=[0.8, 1.6] 1.0
Contrast range=[0.7, 1.3] 1.0
Saturation range=[0.8, 1.1] 1.0
Hue range=[-0.2, 0.2] 1.0

Gaussian Blur kernel size=(5,5),
sigma=(2,2)

0.7

Motion Blur

kernel size=(5,5),
angle=[-25, 25],
direction=[-1, 1],
resample=’BICUBIC’

0.7

Box Blur kernel size=(5,5) 0.7
Gaussian Noise std=0.05 1.0

No

Brightness range=[0.95, 1.05] 0.9
Contrast range=[0.95, 1.05] 0.9
Saturation range=[0.95, 1.05] 0.9

Gaussian Blur kernel size=(3,3),
sigma=(1.2,1.2)

0.7

Motion Blur

kernel size=(3,3),
angle=[-20, 20],
direction=[-1, 1],
resample=’BICUBIC’

0.7

Box Blur kernel size=(3,3) 0.7
Gaussian Noise std=0.006 0.9

Table B1. This table lists the different parameters used to manipulate a victim video
frame or victim image so that the manipulated area is either perceptually visible or
invisible. These parameters are passed into different augmentation modules available
in the open-source differentiable computer vision library Kornia.

manipulated videos frames of each manipulated video into
the set of manipulated videos. All videos were re-encoded
as H.264 videos using FFmpeg with the constant rate factor
of 23 and the frame rate of 30 FPS.

Note that, in addition to the three video datasets made
using the process described above, we also created three
Standard Image Manipulation datasets in the exact same
procedure. This resulted in three auxilary image datasets:
ICMS, IPVM and IPIM.

A summary of all datasets are listed in Table B2, B3, B4

A.2. Set B: In-the-Wild Manipulated Datasets

In addition to evaluating on our Standard Video Manip-
ulation datasets, we tested our proposed network and other

1

network on six In-the-Wild Manipulated datasets: E2FGVI
Inpainted Videos, FuseFormer Inpainted Videos, VideoSham,
DeepFaceLab Deepfake Videos, DeepfakeDetectionDataset
(DFD), and FaceForensics++(FF+).

The VideoSham dataset used in this paper was a sub-
set of the one published by Adobe Research [6]. We ex-
cluded videos with audio track or temporal manipulations
and videos with resolution less than 1080p. Hence, the re-
maining manipulated videos were attacked by 1) adding
objects/subjects, 2) removing objects/subjects, 3) back-
ground/object’s color change and 4) adding/removing text.
Since the masks indicating the manipulation regions were
missing from the original dataset, we created them by first
dividing both the manipulated frame and the original frame
into small, non-overlapping blocks (16× 16), then comput-
ing the average luminance-value absolute difference across
3 channels (R, G, B) between each original and manipulated
block. After we produced a scalar value for every block, we
normalized these values so that they were between 0 and 1
and thresholded them so that they became binarized. We
then projected the binary value of each blocks to all the pixel
locations belong to that block in order to create a binarized
pixel-level masks indicating the manipulated region.

The E2FGVI and FuseFormer Inpainted Videos
datasets was generated by replacing objects in a scene with
their background. In order to leverage existing state-of-
the-art video inpainting algorithms like E2FGVI-HQ [4]
and FuseFormer [5], we needed videos in which some to-
be-removed objects were segmented across multiple frames.
Therefore, we chose the Densely Annotated Video Segmenta-
tion (DAVIS) dataset [7] for this purpose because it contains
both the original videos and the ground-truth segmentation
masks for foreground objects in those videos. Inputing a
video and its masks into the network code provided publicly
by the authors of E2FGVI-HQ and FuseFormer, and using
the recommended settings, we generated videos in which
the segmented objects were inpainted over. We applied this
process over all 90 videos in the DAVIS dataset to get 90
inpainted videos, which we used for evaluation.

The DeepFaceLab Deepfake Videos dataset was made
by creating deepfaked videos of celebrity interview videos
downloaded from YouTube. These downloaded videos were
first trimmed down to maximum of 30 seconds, where the
only primary subject on the scene was a human body with its
face clearly visible. We then chose one source-destination
video pair from our set of downloaded videos to perform
face swapping. Note that faces of the similar skin tone and
gender were more likely to result in better quality deepfakes.
We then extracted all faces from the frames of the source and
destination video. These faces were then aligned and learned
by a deep neural network architecture from DeepFaceLab [2].
After we trained the deepfake network, we used it to perform
face-swapping for each uncompressed frame. Finally, these

frames were compressed into an H.264 video using FFmpeg
with the constant rate factor of 23 and the frame rate of
30 FPS. Using this procedure, we generated 10 deepfaked
videos, in which we took out continuous 30 frames chunk
from each video to make the Deepfake Video dataset.

The DeepfakeDetectionDataset and the FaceForen-
sics++ dataset were gathered from the original authors’
sources available on github [1, 8]. These two datasets con-
tains original videos and videos which were deepfaked using
different algorithms (Face2Face [9], FaceSwap [3], etc.).

Dataset
Original Manipulated

of Frames # of Videos # of Frames # of Videos
VCMS 48000 1600 48000 1600
VPVM 48000 1600 48000 1600
VPIM 48000 1600 48000 1600
ICMS 48000 N/A 48000 N/A
IPVM 48000 N/A 48000 N/A
IPIM 48000 N/A 48000 N/A

Table B2. Summary of our training datasets.

Dataset
Original Manipulated

of Frames # of Videos # of Frames # of Videos
VCMS 7800 260 7800 260
VPVM 7800 260 7800 260
VPIM 7800 260 7800 260
ICMS 7800 N/A 7800 N/A
IPVM 7800 N/A 7800 N/A
IPIM 7800 N/A 7800 N/A

Table B3. Summary of our validation datasets.

Group Dataset
Original Manipulated

of Frames # of Videos # of Frames # of Videos

A
VCMS 4200 140 4200 140
VPVM 4200 140 4200 140
VPIM 4200 140 4200 140

B
VideoSham 7897 32 12746 64
E2FGVI Inp.
Videos 6208 90 6208 90

FuseFormer Inp.
Videos 6208 90 6208 90

DeepFaceLab
Deepfake Videos 300 10 300 10

DFD 103056 108 305447 920
FF++ 73770 140 284064 840

Table B4. Summary of the datasets used for evaluating the performance of our network
and others.

B. Run Time Analysis
In this section, we provide a preliminary run time anal-

ysis of our network and other competing networks: FSG,
EXIFnet, Noiseprint, ManTra-Net and MVSS-Net. These
run time benchmarks are gathered using unoptimized code,
taken directly from other authors’ publicly available code
repositories. Therefore, these results do not represent the
best potential run time of these algorithms. They only show
what one may experience the run time of each algorithm by
directly using other authors’ publicly available code. We
performed this analysis on a machine with an NVIDIA RTX

Network Average Analysis Frame Rate
(FPS)

Proposed 30.80
FSG 1.82
EXIFnet 0.04
Noiseprint 0.57
ManTra-Net 0.40
MVSS-Net 26.06

Table C1. This table shows the average run time (number of samples per second) of
our network and competing networks.

3090 GPU, a 12th Gen Intel i9-12900KF CPU (24 cores
at 5.200 Ghz), 64 GB of DDR4 (2800Mhz) RAM, running
Ubuntu 22.04.1 with Kernel version 5.15.0-52-generic. We
ran 1000 samples individually, each of size 1080×1920×3,
through each network, recorded the total run time, then re-
ported the average run time as frames per second (FPS).

From Table C1, we see that our network achieves the
highest FPS, or fastest run time when compared to competing
networks. Additionally, with a FPS of over 30, our network

is capable of real-time video processing, which can be very
useful in practical scenarios.

C. Additional Examples From Each Dataset
and Their Localization Results

In this section, we show additional representative exam-
ples from each dataset along with their localization results
from our proposed network and other competing networks:
FSG, EXIFnet, Noiseprint, ManTra-Net and MVSS-Net.

A brief discussion and interpretation of the results for
each dataset is provided in each figure’s caption. Results for
the VCMS dataset are presented in Figure D1, results for
the VPVM dataset are presented in Figure D2, results for
the VPIM dataset are presented in Figure D3, results for the
Deepfake Video dataset are presented in Figure D4, results
for the Inpainted Video dataset are presented in Figure D5
and results for the VideoSham dataset are presented in Figure
D6.

Frame

Mask

Proposed

FSG

EXIFnet

Noiseprint

ManTra-Net

MVSS-Net

Figure D1. This figure shows the localization results of different networks on the VCMS dataset. Our proposed network’s localization results are good, with some minor false
alarms on column 1, 3, 6 and 9. We note that, our predicted masks are blobs, which means a large source of our pixel-level localization error comes from the fact that we cannot
predict shapes with sharp, concave edges. By contrast, networks, which leverage edge information, like ManTra-Net and MVSS-Net were able to produce masks with sharp edges.
Hence, MVSS-Net were comparable to our network in terms of localization performance. On the other hand, FSG, EXIFnet and Noiseprint did not seem like they could make
reasonable predictions about the manipulation region.

Frame

Mask

Proposed

FSG

EXIFnet

Noiseprint

ManTra-Net

MVSS-Net

Figure D2. This figure shows the localization results of different networks on the VPVM dataset. Our proposed network’s localization results are good, with some minor false
alarms on column 2 and 7. Again, our predicted masks are blobs, which means a large source of our error comes from the fact that we cannot predict shapes with sharp, concave
edges. Nonetheless, contrast to results on VCMS, strong competitors like MVSS-Net and Mantra-Net could not identify the manipulated region unless it was extremely visible (e.g
column 1, 2, 3 and 4). Other examples contained manipulations which resulted in perceptually visible edges but it seemed like competing algorithms false alarmed on regions which
had distinct textures versus the rest of the frame, such as they sky (column 3, 6, 8), the colored bricks (column 7), and the building (column 8).

Frame

Mask

Proposed

FSG

EXIFnet

Noiseprint

ManTra-Net

MVSS-Net

Figure D3. This figure shows the localization results of different networks on the VPIM dataset. Our proposed network’s localization results are strong, with some minor false
alarms on column 1, 2 and mis-detections on column 4. Differs from VCMS and VPVM, in this dataset, the manipulations’ strengths were so low that they are largely perceptually
invisible. Hence, in contrast to our network, other competing networks failed to provide any meaningful predictions of the manipulated region.

Frame

Mask

Proposed

FSG

EXIFnet

Noiseprint

ManTra-Net

MVSS-Net

Figure D4. This figure shows the localization results of different networks on the DeepFaceLab Deepfake Videos dataset. Our proposed network’s localization results are reasonable,
with minor false alarms on column 1, 2, 3, 7 and mis-detections on column 4. Our network was able to largely identify the deepfaked faces in each of these example. However, for
scenes similar to column 4, in which both the manipulated region and its surrounding regions had poor lighting condition, our network’s performance seemed to be lower. Notably
on column 7, although only the face was manipulated, we were able to detect the watermarked logo on the top right of the frame as well. This prediction is reasonable since the
watermark was added in post-processing, hence, it could be considered an additional manipulation. Since other competing networks seemed to be identifying the entire body or the
surrounding regions with distinct textures to be manipulated, they did not provide good localization performance in this dataset.

Frame

Mask

Proposed

FSG

EXIFnet

Noiseprint

ManTra-Net

MVSS-Net

Figure D5. This figure shows the localization results of different networks on the two Inpainted Videos datasets. Our proposed network’s localization results are reasonable, with
false alarms on column 1, 4, 6, 7 and mis-detections on column 7. Our network were able to largely identify the regions where the segmented objects were removed. On column 7,
although our network misdetected the removed motorbike on this frame, we were able to occasionally catch it in other frames of the video. Generally, when the video was stable,
without a lot of moving objects, we were able to reliably detect the manipulated regions. However, if the camera moved around too quickly, the frame was blurred, which made our
network less likely to provide accurate predictions. While our network generalized well over this dataset, other competing networks failed to identify any manipulations in these
videos. We suspected that since objects were removed, there existed no edge information for these networks to rely on, and the residual information might be too different for them
to behave properly.

Frame

Mask

Proposed

FSG

EXIFnet

Noiseprint

ManTra-Net

MVSS-Net

Figure D6. This figure shows the localization results of different networks on the VideoSham dataset. Our proposed network’s localization results are reasonable, with minor false
alarms on column 1, 2, 3 and mis-detections on column 3, 4, 5. Our network were able to largely identify the manipulated regions in each of these example. However, on scenes like
column 4 where the manipulated region was too small, it was not possible for our network and other competing networks to detect. Our network also missed two added books in the
back on columns 3, likely because their sizes were small. Additionaly, on column 5, where the color of the wall on the right was changed from blue to red, our network failed to
identify the entire manipulated region. Other than these errors, our network produced reasonable localization results, while other competing methods largely failed to identify any
manipulations.

References
[1] Nick Dufour and Andrew Gully. Deepfakedetectiondataset -

contributing data to deepfake detection research, Sep 2019. 2
[2] Ivan Perov et. al. Deepfacelab: A simple, flexible and extensi-

ble face swapping framework. CoRR, abs/2005.05535, 2020.
2

[3] M Kowalski. Marekkowalski/faceswap: 3d face swap-
ping implemented in python. GitHub.[Online]. Available:
https://github. com/MarekKowalski/FaceSwap. 2

[4] Zhen Li, Cheng-Ze Lu, Jianhua Qin, Chun-Le Guo, and Ming-
Ming Cheng. Towards an end-to-end framework for flow-
guided video inpainting. In CVPR, pages 17562–17571, June
2022. 2

[5] Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu,
Wenxiu Sun, Xiaogang Wang, Jifeng Dai, and Hongsheng Li.
Fuseformer: Fusing fine-grained information in transformers
for video inpainting. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 14040–14049,
2021. 2

[6] Trisha Mittal, Ritwik Sinha, Viswanathan Swaminathan, John
Collomosse, and Dinesh Manocha. Video manipulations be-
yond faces: A dataset with human-machine analysis. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 643–652, 2023. 2

[7] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
beláez, Alex Sorkine-Hornung, and Luc Van Gool. The 2017
davis challenge on video object segmentation. arXiv preprint
arXiv:1704.00675, 2017. 2

[8] Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian
Riess, Justus Thies, and Matthias Nießner. Faceforensics++:
Learning to detect manipulated facial images. In Proceedings
of the IEEE/CVF international conference on computer vision,
pages 1–11, 2019. 2

[9] Justus Thies, Michael Zollhofer, Marc Stamminger, Christian
Theobalt, and Matthias Nießner. Face2face: Real-time face
capture and reenactment of rgb videos. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
pages 2387–2395, 2016. 2

	. Dataset Creation
	. Set A: Standard Video Manipulations Datasets
	. Set B: In-the-Wild Manipulated Datasets

	. Run Time Analysis
	. Additional Examples From Each Dataset and Their Localization Results

