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A. Denoising Diffusion Probabilistic Models
A diffusion model consists of two processes, forward and

reverse. In the forward process, Gaussian noise is grad-
ually added to the input image and, eventually, becomes
pure Gaussian noise. Conversely, in the reverse process,
starting from pure Gaussian noise, noise is removed se-
quentially to recreate the original images. Following this
definition, DMs can be classified into at least three cate-
gories [1, 9]: denoising diffusion probabilistic models and
noise-conditioned score networks, and stochastic differen-
tial equations. The method proposed in this study is based
on DDPMs. In the following, we derive the loss function
of DDPMs in Eq. 1. The following derivation is based
on [3, 8].

Given a data distribution x0 ∼ q(x0), the forward pro-
cess is defined as the Markov process, where a series of
latent variables x1, . . . , xT is produced by progressively
adding Gaussian noise:

q(xt|xt−1) = N (
√

1− βtxt−1, βtI), (1)

to the sample. Hence,

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1). (2)

Here, βt ∈ (0, 1), ∀t ∈ {1, . . . , T} indicates the variance
at time t. When T is sufficiently large, xT is equivalent to
a pure Gaussian noise. Here, there is a helpful property in
that xt at any timestep t can be sampled directly from x0,
following a single Gaussian

q(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I), (3)

where αt = 1 − βt and ᾱt =
∏t

s=0 αt. Therefore, using
ϵ ∼ N (0, I), xt =

√
ᾱtx0 + (1− ᾱt)ϵ.

In the reverse process, starting from a Gaussian noise
xT ∼ N (0, I), we can reverse the forward process by sam-
pling from the posterior q(xt−1|xt). However, directly es-
timating q(xt−1|xt) is difficult because it requires the data

(a)

(b)

Figure 1. Architecture details of the text encoders in (a) TCDM
and (b) TCDM*, respectively. FC, SA, PE, DO, and LN stand for
a fully-connected layer, a self-attention layer, positional encoding,
dropout, and layer normalization, respectively.

distribution q(x0). However, it is known that q(xt−1|xt)
can be approximated as a Gaussian distribution when βt is
sufficiently small [8]. Therefore, q(xt−1|xt) can reasonably
fit to the true posterior by being parameterized as

pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)). (4)

Consequently, the reverse process is parameterized as fol-
lows:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) (5)

The loss function to be optimized is provided by the vari-
ational lower bound of the negative log likelihood L =
E[− log pθ(x0)]. This optimization can be performed ef-
ficiently for each timestep because L can be broken down
by using chain rules and Eq. 3. The final loss function is
obtained as follows:

Lu = Et,x0,ϵ[∥ϵ− ϵθ(xt, t)∥2]. (6)

See [3,8] for the detailed derivation of Eq. 6. Consequently,
a deep neural network ϵθ is trained to estimate the Gaussian
noise ϵ contained in xt.

1



Hyperparameters Traning on TextZoom (Sec. 4.1) Training on Extended dataset (Sec. 4.2) Fine-tuning (Sec. 4.3)
Diffusion Steps 1000 1000 1000
Noies Schedule linear linear linear

Channels 128 128 128
Channel Multiplier 1,2,3,4 1,2,3,4 1,2,3,4
Number of Heads 1 1 1

Batch Size 128 128 128
Learning Rate 3e-4 3e-4 3e-5

Iterations 100K 300K 30K
Embedding Dimension 512 512 512
Attention Resolution 32,16,8 32,16,8 32,16,8

Table 1. Hyperparameters of TCDM and TCDM* for each experiment in the main text.

kb 0 3 6 9
TCDM 55.0% 55.1% 55.7% 55.6%

TCDM* 55.0% 57.5% 67.0% 68.1%

Table 2. Average recognition accuracy of TCDM and TCDM* for
kb ∈ {0, 3, 6, 9}.

kb km Acc. (%) Time (s)
1 1 58.0 9.30
3 0 57.5 5.39
6 0 67.0 6.07
9 0 68.1 6.82

Table 3. Average recognition accuracy and inference time of
TCDM* for (kb, km) ∈ {(1, 1), (3, 0), (6, 0), (9, 0)}

B. Design of Text-conditional DM Architec-
tures

To describe the architectural differences simply, we in-
troduce two parameters: kb and km. kb denotes the number
of iterations of the cross-attention and self-attention mod-
ules at the bottom of the UNet and km denotes the number
of iterations in each resolution layer, except for the bottom
layer. Using kb and km, the architectures proposed in prior
studies [6, 7] can be expressed as kb = 1 and km = 1.
To determine kb of our text-conditional DM, we used grid
search, and Table 2 shows recognition accuracy of our text-
conditional DMs for kb ∈ {0, 3, 6, 9}. TCDM denotes the
text-conditional DM and TCDM* indicates TCDM trained
using ground-truth text input. TCDM achieved the best per-
formance when kb = 6 and TCDM* when kb = 9. In
addition, we set km to 0 for TCDM because km > 0 sig-
nificantly increases the computational cost. Table 3 shows
the inference time per image. We can see that setting km to
1 not only results in a substantial increase in the inference
time but also leads to a drop in recognition accuracy.

The text encoder of our text-conditional DM has a sim-
ple architecture, which is based on self-attention and fully-

connected layers. This architecture is based on the text prior
generator proposed in [4]. Figures 1a and 1b show the archi-
tectural details of the text encoders for our text-conditional
DMs. When ground-truth texts are used, the input of the
text encoder has a shape 26×63, where the maximum word
length l = 26, and the alphabet size |A| = 63. The input
text was encoded into text features for each character candi-
date, and the output tensor had a shape 26× 512. When the
text prior generator is used, the text encoder has the same
architecture, except that the input is given as intermediate
features of the text prior generator and has a shape 26×512.

The implementation of our text-conditional DMs was
based on the code released by the authors in [2, 5]. In Tab.
1, we present hyperparameters of our text-conditional DMs
for each experiment in the main text.
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Figure 2. Evaluation results of (a) TATT and (b) our text-
conditional DMs trained on the augmented dataset in terms of
PSNR.
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Figure 3. Average recognition accuracy of TATT trained on the augmented datasets with various sizes. The augmented datasets were
created with a different maximum word length s ∈ {7, 10, 13}. (a) and (b) show the average recognition accuracy of TATT trained on
TZ+SynTZ and TZ+SynSTR, respectively. The recognitiona accuracy was evaluated by CRNN.
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Figure 4. Average SSIM of TATT trained on the augmented datasets with various sizes. The augmented datasets were created with a
different maximum word length s ∈ {7, 10, 13}. (a) and (b) show the average SSIM of TATT trained on TZ+SynTZ and TZ+SynSTR,
respectively.
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Figure 5. Average PSNR of TATT trained on the augmented datasets with various sizes. The augmented datasets were created with a
different maximum word length s ∈ {7, 10, 13}. (a) and (b) show the average PSNR of TATT trained on TZ+SynTZ and TZ+SynSTR,
respectively.

C. Evaluation of Extended Dataset using
PSNR

Figures 2a and 2b show the average PSNR of TATT and
the text-conditional DMs, respectively, as solid lines. Sim-
ilar to the results of SSIM, PSNR does not depend on ns.
Figure 2 also shows the results of the fine-tuning with dotted
lines. We can see that PSNR can be significantly improved
by fine-tuning.

D. Evaluation of Extended Dataset for Varying
Maximum Word Lengths

When synthesizing text images with Synthesizer, we uni-
formly sampled the word length from the minimum word
length of 2 to the maximum word length s = 13 and chose
a word from an English word dictionary with the same word
length. In this section, we compare several maximum word
lengths s ∈ {7, 10, 13} in terms of the recognition accuracy
and SSIM/PSNR. Figures 3a, 4a, and 5a show the results of
recognition accuracy and SSIM/PSNR of TATT trained on
TZ+SynTZ, respectively. Figures 3b, 4b, and 5b show the



0.555

0.56

0.565

0.57

0.575

0.58

0.585

0.59

0.595

0.6

0 50000 100000 150000 200000

Av
er

ag
e T

ex
t R

ec
og

ni
tio

n 
Ac

cu
ra

cy

Training Dataset Size ns

TZ+SynS (s=7)
TZ+SynS (s=13)

(a)

0.555

0.56

0.565

0.57

0.575

0.58

0.585

0.59

0.595

0.6

0 50000 100000 150000 200000

Av
er

ag
e T

ex
t R

ec
og

ni
tio

n 
Ac

cu
ra

cy

Training Dataset Size ns

TZ+SynS (s=7)
TZ+SynS (s=13)

(b)

Figure 6. Average recognition accuracy of our text-conditional DMs trained on the augmented datasets with various sizes. The augmented
datasets were created with a different maximum word length s ∈ {7, 13}. (a) and (b) show the average recognition accuracy of the DMs
trained on TZ+SynTZ and TZ+SynSTR, respectively. The recognitiona accuracy was evaluated by CRNN.
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Figure 7. Average SSIM of our text-conditional DMs trained on the augmented datasets with various sizes. The augmented datasets were
created with a different maximum word length s ∈ {7, 13}. (a) and (b) show the average SSIM of the DMs trained on TZ+SynTZ and
TZ+SynSTR, respectively.
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Figure 8. Average PSNR of our text-conditional DMs trained on the augmented datasets with various sizes. The augmented datasets were
created with a different maximum word length s ∈ {7, 13}. (a) and (b) show the average PSNR of the DMs trained on TZ+SynTZ and
TZ+SynSTR, respectively.

same trained on TZ+SynSTR. We can see that the recog-
nition accuracy tends to improve as s increases. However,
SSIM and PSNR did not improve depending on s.

In addition, Figs 6a, 7a, and 8a show the results of recog-
nition accuracy and SSIM/PNSR of the text-conditional
DMs trained on TZ+SynTZ, respectively. Figures 6b, 7b,
and 8b show the same trained on TZ+SynSTR. There was
no significant difference between the results for s = 7 and
s = 13. Therefore, following the results of TATT, we set s
to 13 in the experiments in the main text.

E. Effectiveness of Ground-truth Text Prior in
Degrader

As mentioned in the main text, ground-truth text prior
was used to train Degrader. However, determining whether
the use of the ground-truth texts is effective for training
Degrader is non-trivial because the image degradation pro-
cess can be realized without the textual information. There-
fore, we conducted experiments to compare LR text images
generated by the Degrader with and without the ground-
truth text prior. For the comparison, we trained TATT
and the text-conditional DMs with HR-LR paired images



Method SSIM (×10−2) PSNR
TATT 88.87 23.60

TATT* 89.93 24.63
TCDM 90.12 25.21

TCDM* 90.37 25.40

Table 4. Comparison among different image degradation methods.

of TextZoom, that is, the HR images were used as input,
and the LR images were used as training targets. To eval-
uate the performance, we measured SSIM/PSNR between
the generated LR images and LR images of TextZoom. Ta-
ble 4 shows the results of comparing TATT with TATT*
and TCDM with TCDM*. Here, TATT* and TCDM* de-
note TATT and the text-conditional DM trained using the
ground-truth text prior, respectively. The SSIM/PSNR of
TATT* are higher than those of TATT. In addition, the
SSIM/PSNR of TCDM* are higher than those of TCDM,
although by a small margin. Based on these results, we be-
lieve that the ground-truth texts may be effective for text-
image degradation. If the variety of degradation process
patterns is limited to those that appear in a specific environ-
ment, the degradation patterns of the text in the text image
may be identified from the corresponding ground-truth texts
to some extent. Therefore, because our objective in this
study is to imitate the TextZoom’s degradation process for
the dataset augmentation, we considered that the ground-
truth text input would be effective for the Degrader.

F. Higher-Resolution Text Images

The HR text images of TextZoom contain many blurred
images, which can deteriorate the performance of STISR
methods. Therefore, we can consider experiments apply-
ing Super-resolver to the HR text images of TextZoom to
improve the quality of the HR images further. Here, we
refer to text images to which Super-resolver is applied as
higher-resolution (HerR) text images. First, we evaluated
the HerR text images in terms of the recognition accuracy
and SSIM/PSNR. As shown in Tab. 5, the recognition ac-
curacy of the HerR images is further improved compared to
that of the HR images. SSIM/PSNR were measured against
the corresponding HR images.

In addition, we conducted experiments in which the
HerR text images were used as the target images for the
TATT training, instead of the HR images . As presented in
Tab. 6, the recognition accuracy obtained with the HerR im-
ages is higher than that with the HR images. On the other
hand, SSIM/PSNR decreases when the HerR images were
used. The deterioration of SSIM/PSNR stems from the de-
viation of SSIM/PSNR between the HR and HerR images,
as shown in Tab. 5. In practical terms, clearer images are
better suited for text recognition (in fact, recognition accu-

Metrics LR SR HR HerR
Acc. (%) 26.8 68.1 72.4 79.3

SSIM (×10−2) 69.61 80.25 - 86.22
PSNR 20.35 22.86 - 23.66

Table 5. Comparison between LR, SR, HR, and HerR text im-
ages of TextZoom in terms of the average recognition accuracy
and SSIM/PSNR. SR and HerR images were generated by apply-
ing Super-resolver to LR and HR images, respectively.

Metrics HR HerR
Acc. (%) 52.6 53.81

SSIM (×10−2) 79.30 74.81
PSNR 21.52 19.64

Table 6. Comparison of the performance of TATT trained with HR
and HerR text images in terms of average recognition accuracy and
SSIM/PSNR. The recognition accuracy was evaluated by CRNN.

racy has been improved); thus we consider that the deterio-
ration of SSIM/PSNR due to the clearer text images is not a
negative effect.
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