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Abstract

This is the supplementary material for “FRoG-MOT:
Fast and Robust Generic Multiple-Object Tracking by loU
and Motion-State Associations” (our main paper). We pro-
vide discussions of the proposed method’s limitations, addi-
tional experimental results, analysis of computational effi-
ciency, and details of the datasets used in our experiments.

A. Additional Results
A.1. Limitations of our proposed method

In this section, we discuss the limitations of the proposed
method. As described in Sec. 5.2 in the original paper, when
detection performance is poor by target occlusion, this de-
tection performance degrades tracking performance. Such
object detection failures due to occlusion are particularly
likely to occur when targets are very dense or for long pe-
riods of target tracking. Examples of specific sequences are
shown in Figure 1. As shown in Fig. 1(a) and (b), three
birds overlap in these sequences. (Please see the red ar-
rows.) Note that for clarity, all but these three trajectories
are not shown in Fig. 1. As shown in Fig. 1(c), the oc-
cluding of these three birds in the proposed method results
in an undetected ID for one target. (Please see yellow ar-
rows.) The proposed method fails to detect the object when
there is excessive occlusion, and thus, the proposed method
fails to track the occluded object. Note that the conven-
tional method, ByteTrack [10], fails to track these two of
the three targets, as shown in Fig. 1(d), even though it uses
the same detector [3] as the proposed method. (Please see
green arrows). These differences show the superiority of
our proposed method over the existing method, even in such
a challenging scenario. Note that the performance of the
proposed method can be further enhanced by improving the
performance of object detection, as described in Table 5 of
our original paper. Improving the performance of object
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Figure 1. Limitations of our proposed method and ByteTrack [10].
Please zoom in for more details of trajectories for each box.

detection is essential for tracking-by-detection methods, in-
cluding the proposed method.

A.2. Analysis of Computational Efficiency

We provide a detailed analysis of the computational ef-
ficiency of our proposed method. Table | shows the rela-
tionship between processing speed and each data set’s aver-
age number of objects. This table shows that our proposed
method is fast enough to allow real-time processing in all
datasets (i.e., MOT17, Danstrack, and GMOT-40). The re-



Table 1. Relationship between the number of objects and FPS.
Dataset [6] # Objects Proc. Speed [FPS]

Dancetrack [6] 9 30.2
GMOT-Split101 35 29.5
MOT17 [5] 96 28.2
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Figure 2. Relationship between the number of objects and pro-
cessing speed for each sequence of Dancetrack and GMOT-40.

lationship between processing time and the average number
of objects in each sequence of GMOT-40 [1]' and Dance-
track [0] is shown in Fig. 2. As shown in Fig. 2, the in-
crease in processing time with increasing average number
of objects is slight. The reason for this is that the tracking
process of the proposed method is a simple implementa-
tion; thus, the computation time is very small compared to
the detection process in the previous stage. In fact, in the
proposed method, the ratio of the computational time of the
detection process (i.e., YOLOX [3]) to that of our track-
ing process is, on average, 79.5% and 20.5%, respectively.
Those results suggest that the computational speed of our
proposed method can be further improved by speeding up
the detection process.

'Note that to evaluate the computational efficiency using large-scale
data, we performed this computation time measurement using all se-
quences of GMOT-40.
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Figure 3. Selection ratio for each sequence on GMOT-Split101 [1]

A.3. Additional Analysis of Motion State Variable
Selection

We discussed the effectiveness of motion state variable
selection in Sec. 5.3 of our original paper. In this section,
we further analyze the effectiveness of motion state vari-
able selection in more detail. We evaluated the selection
ratio of which motion state variable was used in each frame
of GMOT-40 [ 1] and Dancetrack [6]. Figures 3 and 4 show
the evaluation results for GMOT-40 [ 1] and Dancetrack [0].
In this analysis, we evaluated the selection ratio using the
ground-truth detection results to remove the harmful effects
of detection failures and analyze the properties of the pro-
posed tracking algorithm. Figure 4 shows that acceleration
was often used in all sequences, followed by velocity and
shape in the Dancetrack dataset. These results are reason-
able because the subject is a person, and the velocity and
the shape rarely change rapidly during the dance. On the
other hand, as shown in Figure 3, in GMOT-40, velocity
and shape are used more frequently than in the dance track.
In other words, velocity and shape are essential in addition
to acceleration for general object tracking. In particular,
the shape is an important motion state variable in sequences
such as birds because their shape changes significantly due
to the flapping of their wings .

Note that although appearance change was also interest-
ingly considered as a candidate, we employ velocity, accel-
eration, and bounding box as motion state variables due to
the poor features extracted from small objects and the heavy
computation for real-time processing.

A.4. Additional Results on DanceTrack [6]

In Section 5.2 in our original paper, we analyzed the per-
formance of our method using the DanceTrack dataset, a
large-scale dataset of 2D MOT. Table 4 of our original pa-
per shows that our proposed method is effective than Byte-

2If the target is very slow (e.g., a helicopter taken at a long distance
in the “airplane” sequence), the motion state does not change rapidly. In
this case, the selection of the motion state did not occur in the proposed
method, so the selection ratio cannot be defined and is not shown in Fig. 3.
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Figure 4. Selection ratio for each sequence on Dancetrack [6].

Table 2. Analysis using Dancetrack test-set [6]. Note that the
results of ByteTrackt are taken from those published on Dance-
track’s GitHub page. The results of ByteTrack{t are fair evalua-
tion settings with our proposed method using the same detection
algorithm and its parameters.

Methods IDF1T HOTA?T AssA1 DetAT MOTAT

CenterTrack [11] 357 41.8 226 781 868
ByteTrack! [10] 51.9 47.1 315 705 882
ByteTrack™® [10] 489 446 285 701 877

Ours 532 468 313 703 882

Track [10] in terms of IDF1 on this data set. In this suplle-
mental, the evaluation data in the test set is also shown in
Table 2. Note that the ByteTrack' results are taken from
the GitHub page of the DanceTrack Project Page . Fur-
thermore, the results of ByteTrack'™ are a fair evaluation
setting with our proposed method using the same detection
algorithm and its hyper-parameters. Table 2 also shows that
the performance of our method on the DanceTrack test set
is similar to or superior to that of ByteTrack in terms of
IDF1 *. Those results suggest the high versatility of our
proposed method.

Note that this paper focuses primarily on 2D generic
MOT. Various datasets and evaluations [2, 7-9] for 3D ob-
ject tracking have also been published recently. Studying
the extending our approach to three-dimensional generic
MOT is a future work.

A.5. Additional Visual Comparisons

Figure 5 shows the additional tracking examples (i.e.,
the trajectory of each target) of the ground truth, Byte-
Track, and our proposed method in the last frame of GMOT-
Split101, respectively. Comparing the results of the ground
truth, ByteTrack, and the proposed method shown in the
first column of this figure (i.e., airplane), it can be seen that
ByteTrack and the proposed method can accurately track

3https://github.com/DanceTrack/DanceTrack
“4Please note that the hyper-parameters of our method in this analysis
are the same as those of the experiment of our original paper.

each target. However, as described in Sec. A.7, ByteTrack
fails to track the generic object in bird and fish sequences,
similar to other existing methods focusing on tracking per-
son crowds in MOT benchmarks. The visual comparisons
of those bird and fish sequences shown in the second and
third columns show that the trajectories are inaccurate and
often missing in ByteTrack (see the white dotted boxes). In
contrast, the proposed method can robustly track those ob-
jects using motion state associations. As shown in the fourth
and last columns, our proposed method is robust in track-
ing many vehicles and balls (see the green dotted boxes).
Those results demonstrate the high versatility of the pro-
posed method for generic MOT tasks. We have submitted
the supplementary video showing the additional tracking re-
sults of our proposed method on GMOT-Split101.

A.6. Additional Results on MOT17 [5]

In our original paper, we present the overall results on
the MOT17-val-half dataset in Table 3 of our original pa-
per. We show additional results for each dataset sequence
in Tab. 3. Here, the best/second results among the proposed
and existing methods are shown in bold/underlined, respec-
tively. In the MOT17-02 sequence, it can be observed that
our proposed method significantly improved with an IDF1
score of 80.1, while the other methods had scores below
50. In particular, the proposed method significantly im-
proved over the other methods for MOT17-05, MOT17-09,
and MOT17-11 sequences. These sequences are challeng-
ing for target tracking due to low camera angles, increased
occlusions, and multiple crossing trajectories. Considering
each target’s motion, the proposed method can handles oc-
clusions and crossings, leading to improved tracking conti-
nuity in these challenging sequences.

A.7. Additional Results on GMOT-Split101

Our original paper presents the overall results on the
GMOT-Split101 dataset in Table 2 of our original paper. We
show additional results for each dataset sequence in Tab. 4.
Here, the best/second results among the proposed and ex-
isting methods are shown in bold/underlined, respectively.
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Figure 5. Additional visual comparisons on GMOT-Split101. Please zoom in for more details of trajectories for each box.

When examining the results for each sequence, the pro-
posed method consistently achieves high scores for all ID
metrics (IDF1, IDP, and IDR), demonstrating strong track-
ing continuity across all target types. For challenging se-
quences such as bird and fish datasets, the performances
of all existing methods, including ByteTrack [10] are poor
because it is difficult to track those targets continually due
to the sudden motion changes. In contrast, our proposed
method outperforms ByteTrack [10], which only uses IoU
for the association, by 4.0 points in the bird sequence and

5.0 points in the fish sequence, respectively. This result sug-
gests that the proposed method can effectively handle target
changes using target-specific motion states. The design of
the proposed method focuses on those challenging scenes
where general objects are densely arranged, and the mo-
tion of each object changes abruptly. On the other hand, for
sequences such as airplane and balloon, where the appear-
ance changes little, motion is mostly linear, and the target
is sparsely located, the performance of Trackformer [4] is
comparable or better. Note that as described in our orig-



Table 3. MOT17-val-half benchmark results in each sequence.The best/Second results are shown in bold/underline.

(a) CenterTrack [11]

IDF1? IDPt IDR? Rec.t Prec.f MT{ IDS, FM| MOTA{ MOTP}
MOT17-02 36.7 57.2 27.1 42.0 88.8 10 100 102 35.6 17.8
MOTI17-04 776 830 729 863 983 50 143 158 84.3 17.3
MOT17-05 60.3 76.6 49.7 62.8 96.7 21 52 49 59.0 17.4
MOT17-09 60.7 73.4 51.8 70.1 99.3 13 40 34 68.2 16.6
MOT17-10 54.7 61.5 49.3 68.3 85.3 13 95 141 54.9 233
MOT17-11 57.4 68.0 49.6 67.1 91.8 11 28 30 60.5 12.8
MOT17-13 61.2 64.0 58.7 75.5 82.5 22 70 74 57.2 223
OVERALL 64.2 74.2 56.6 71.6 9.1 41 528 588 66.1 17.9
(b) Trackformer [4]

IDF1? IDPt IDR? Rec.t Prec.f MT{ IDS, FM| MOTA{ MOTP}
MOT17-02 39.8 65.2 28.6 42.4 96.6 10 80 89 40.1 15.4
MOT17-04 82.6 90.6 76.0 83.1 99.1 46 67 58 82.1 12.9
MOT17-05 69.1 80.4 60.6 73.2 97.1 29 43 47 69.7 17.7
MOT17-09 65.6 78.7 56.3 69.7 97.5 13 17 15 67.4 114
MOT17-10 68.6 75.5 62.9 78.0 93.6 17 38 104 72.0 20.5
MOT17-11 67.1 77.6 59.1 75.0 98.4 19 19 35 73.3 11.6
MOT17-13 81.6 86.5 77.3 85.6 95.9 31 81 69 79.4 19.1
OVERALL 71.5 834 62.5 73.2 97.7 49 345 417 70.8 14.6

(c) ByteTrack [10]

IDF1T IDPT IDRT Rec.t Prec.t MT{ IDS| FM| MOTAT MOTPt
MOT17-02 48.8 58.1 42.1 61.6 85.0 15 85 181 49.8 20.0
MOT17-04 89.7 89.0 90.5 94.2 92.8 60 29 79 86.8 14.9
MOTI17-05 734 819 665 768 947 34 17 36 72.0 18.0
MOT17-09 75.7 82.8 69.7 82.8 98.4 17 10 30 81.1 17.7
MOTI7-10 679 733 632 786 912 16 38 110 70.4 22.7
MOT17-11 774 833 722 794 916 23 1 27 72.0 15.0
MOTI7-13 738 789 694  79.1  89.9 25 16 4 69.7 22.0
OVERALL 77.0 81.1 73.2 82.7 91.6 56 206 505 74.7 17.1

(d) Ours

IDFIT IDPt IDRT Rec.{ Prec.f MT{ IDS] FM| MOTAT MOTP}
MOT17-02 80.1 87.6 73.7 83.8 99.6 16 13 24 83.0 15.5
MOT17-04 68.6 769 62.0 75.6 93.7 16 26 87 70.0 219
MOT17-05 90.8 913 90.2 93.5 94.6 61 18 91 88.1 12.8
MOT17-09 78.2 84.4 72.8 81.9 95.0 37 25 48 76.8 18.0
MOT17-10 58.0 67.9 50.5 64.5 86.7 17 62 179 539 19.6
MOT17-11 83.8 928 76.4 80.1 97.3 29 14 20 71.5 19.7
MOT17-13 67.5 70.1 65.0 814 87.8 22 12 28 69.8 12.8
OVERALL 79.2 83.9 75.0 83.2 93.1 58 170 477 76.7 15.5

inal paper, the processing time of our proposed method
overwhelmingly outperforms those transformer-based ap-
proaches.

B. Details of GMOT-Split101 Dataset

We provide a detailed explanation of the GMOT-
Split101 dataset used in the main paper. GMOT-Split101
was prepared based on the GMOT-40 dataset. While
GMOT-40 is a high-quality dataset containing various types
of objects in crowded scenes, using it for MOT evaluation
was challenging due to the lack of separation into training
and test sets for each class. To address these issues, we

separated the data into training and test sets for each class
based on the four sequences available per class, as shown
in Tab. 5. For example, in the proposed method and Byte-
Track [10], the training datasets are used to train the pa-
rameters of YOLOX [3]. Note that the training protocol for
YOLOKX followed the original paper [3] and the public im-
plementation.

Our GMOT-Split101 dataset is organized from the exist-
ing dataset GMOT-40 to improve two points: data imbal-
ance and domain shift. To prevent data imbalance due to
longer test sequences, we standardized the sequence length
by adding 100 tracking frames to the initial frame, resulting
in 101 frames. For classes with limited training data, ad-



Table 4. Evaluation results of each method for each sequence in the GMOT-Split101 benchmark.

(a) CenterTrack [11]

(b) Trackformer [4]

Sequence IDF1T IDP{ IDRT Rec.t Prec.f MOTAT MOTPT Sequence IDF1{ IDPT IDRT Rec.T Prec.t MOTAT MOTPT

airplane 98.8 987 98.9 98.9 98.7 97.6 0.20 airplane 99.0 99.1 98.9 98.9 99.1 98.0 0.22

ball 738  75.7 72.0 92.1 96.8 87.5 0.10 ball 835 850 821 95.6 98.9 93.5 0.15

balloon 837 823 85.1 86.6 83.7 69.6 0.14 balloon 924 910 939 95.0 92.0 86.6 0.20

bird 417 555 334 54.2 90.0 393 0.24 bird 58.0 637 533 73.9 88.2 59.8 0.24

boat 875 895 85.7 90.3 94.3 84.5 0.18 boat 86.0 912 81.4 86.7 97.2 83.9 0.20

car 87.8  87.6 87.9 90.9 90.6 81.3 0.17 car 90.4 905 90.3 92.1 92.3 84.4 0.21

fish 523 59.0 469 59.1 74.3 37.1 0.32 fish 574  69.7 488 57.1 81.3 49.8 0.25

person 88.2  89.0 87.5 98.2 99.9 97.7 0.13 person 83.6 84.8 82.4 96.4 99.3 95.0 0.17

stock 873 917 83.4 89.3 98.2 87.1 0.17 stock 91.2 940 886 92.0 97.5 89.3 0.20

OVERALL 72.8 78.0 68.3 71.6 88.6 65.8 0.21 OVERALL 78.5 84.0 73.7 81.1 92.5 73.6 0.21
(c) ByteTrack [10] (d) Ours

Sequence IDF11T IDPT IDRT Rec. Prec.] MOTAT MOTPT Sequence IDF11T IDPT IDRT Rec.t? Prec.t MOTAT MOTPT

airplane 96.2 96.2 96.2 96.2 96.2 924 0.20 airplane 96.2 96.2 96.2 96.2 96.2 92.4 0.20

ball 927 936 919 93.0 94.8 87.7 0.13 ball 92.8 937 91.9 93.0 94.8 87.8 0.13

balloon 86.9 81.2 935 935 81.2 72.0 0.16 balloon 88.4 83.7 93.6 93.6 83.7 75.4 0.16

bird 598 646 55.6 72.1 83.8 53.0 031 bird 63.8  66.7 61.1 74.7 83.2 54.7 0.31

boat 93.5 93.9 93.0 94.4 95.3 89.6 0.14 boat 94.7 95.8 93.7 94.0 96.1 90.0 0.14

car 933 91.6 949 95.8 924 87.8 0.17 car 934 919 947 95.6 92.8 88.1 0.17

fish 55.1 61.1 50.2 65.6 79.8 46.6 0.26 fish 60.1 674 54.2 65.2 81.2 48.0 0.26

person 98.7 984 99.0 99.5 99.0 98.3 0.12 person 99.3 994 99.1 99.1 99.4 98.5 0.12

stock 926 930  92.1 95.7 96.7 92.3 0.16 stock 935  94.1 92.9 95.5 96.8 92.2 0.16

OVERALL 788 813 765 838  89.2 723 020 OVERALL 808 837 782 839  89.8 732 0.20

Table 5. Composition of the sequence elected by GMOT-Split101 References

Class For train  For test Non-use
airplane 1,2 2(rest) 3,4
ball 2,3,4 3(rest) 1
balloon 2,4 A4(rest) 1,3
bird 1,2 2(rest) 3,4
boat 1,2 4 3

car 1,24 1(rest) 3

fish 2,3,4 1 -
person 23 3(rest) 1,4
stock 1,3 1(rest) 2,4

ditional frames from the test set were included in the train-
ing set (indicated by rest” in Tab. 5, it does not use for a
test). Some classes in the dataset are composed entirely of
sequences with similar domains, where scenes within each
class are similar. For some other classes, all sequences
have vastly different domains, including different object
types, making it difficult to evaluate the tracking perfor-
mance fairly. We only used sequences with similar or re-
lated domains for both the training and test sets to prevent
evaluation biases resulting from significant domain shifts
within each class. Other sequences with significant domain
shifts were excluded from the original dataset (as indicated
by "Non-use” in Tab. 5). For instance, we included only the
sequences containing flying birds for the bird class because
walking birds sequence had vastly different domains.
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