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A. Implementation Details

A.1. Initial textured 3D body construction

Projective texture mapping. We explain how to con-
struct an initial textured body model with the desired pose
and body shape. First, we fit the SMPL-X model [1] to
the reference image using an existing method [2]. For the
reference person image and the fitted SMPL-X model, we
assign UV coordinates to corresponding vertices via projec-
tive texture mapping. We then change the pose and shape
of the SMPL-X model to obtain an initial textured 3D body
model.

Horizontal reflection padding. Naı̈vely applying projec-
tive texture mapping yields visual artifacts, particularly
around the body’s silhouette, due to slight misalignment.
For example, the black background color appears around
the right hand and right leg in the example of Figure 1,
lower-middle. As a simple remedy for this, we apply hori-
zontal reflection padding to the original reference image us-
ing a binary mask; for each scanline from slightly inside the
mask, we copy pixel values at the mirror-symmetric posi-
tions about the mask boundary (Figure 1, upper-right). This
approach is not a perfect solution but is sufficient to avoid
copying the background color (Figure 1, lower-right).

A.2. Loss functions

Here we describe the details of loss functions used in
Steps 1 and 2.

Step 1: Fullbody refinement. For the refinement of a
fullbody image, we use the Adaptive Wing (AW) loss [3]
LAW and CLIP similarity [4] loss LCLIP . The AW loss
LAW is the adaptive wing loss [3] defined between the
joint heatmaps estimated using OpenPose [5] for the output
and rendered SMPL-X images. Our heatmap resolution is
128× 128. CLIP similarity loss LCLIP is defined between
the output and reference images for each part [6] based on
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Figure 1. Horizontal reflection padding is applied to the reference
image to prevent the background color from showing up in the
texture-projected human model.

SMPL-X labeling as follows:

LCLIP =

l∑
p

ϕ(Ipref)
Tϕ(Ipout), (1)

where l is the number of body part labels of SMPL-X, Iref
and Iout are the body parts cropped from the reference and
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Table 1. Adjectives describing body shape corresponding to BMI.

BMI adjective
≤ 15.0 “skinny”
≤ 18.5 “under weight”
≤ 25.0
≤ 30.0 “overweight”
> 30.0 “fat”

output images. ϕ is the normalized embedding function of
the CLIP. The total loss function for fullbody refinement is:

LFullbody = λAWLAW + λCLIPLCLIP , (2)

where λPose = 0.002 and λCLIP = 2 are the weights.

Step 2: Facial refinement. To optimize the text embed-
ding for refining a face, we use the identity loss using Mag-
Face [7], the keypoint loss using RetinaFace [8], and the
CLIP similarity [4]. The keypoint loss Lkeypoint is defined
as MSE loss between the face keypoints estimated using Re-
finaFace [8] for the output and rendered SMPL-X images.
Unlike fullbody refinement, we simply measure the CLIP
similarity between the reference and the output face image.
The total loss function for the facial refinement is:

LFace = λIDLID+λCLIPLCLIP +λKeypointLKeypoint,
(3)

where λKeypoint = 0.1, λCLIP = 10, and λID = 10 are
the weights. When we edit the body shape, we halve λCLIP

and λID to tolerate changes in facial features.

A.3. Text prompt

We describe the details of prompts used for condition-
ing on our refinement module. Our prompts contain “sks,”
a special token used for text-to-image personalization by
DreamBooth [9]. Our method associates this token with a
reference person. In addition, our prompts contain infor-
mation on a target face orientation, such as “facing left.”
We used the face detection API of Face++ [10] to obtain
the face orientation, which is automatically reflected in the
prompts. For body shape editing, we use adjectives describ-
ing the body shape according to BMI calculated from the
input height and weight (see Table 1). For example, when
the target model faces to the left with a fat body, we use a
prompt “photo of a fat sks man facing left” in Step 1. In
Step 2, we use “face” instead of “man”.

A.4. Refinement mask

We describe how to create a refinement mask, which in-
dicates areas to be refined. In Step 1, we compute a mask
consisting of invisible areas in a reference person image.
To do so, we first emit a ray to each triangle’s centroid in

a SMPL-X [1] mesh from the viewpoint for texture projec-
tion. Next, we assign an “invisible” label to the triangles
that the rays do not hit. After editing the pose and body
shape of the SMPL-X model, we render the edited model
to obtain a mask according to the labeled areas. In Step 2,
we compute a mask by assigning 0 to pixels within 20%
of the mask width from its boundaries, measured using the
Manhattan distance, and 1 to the remaining pixels.

B. Additional Results
We show the additional results that are not included in

the main paper due to the page limitation. The reference im-
ages of the following results were obtained from DeepFash-
ion [11], MonoPerfCap [12], Everybody Dance Now [13],
and EHF [1].

B.1. Qualitative evaluation

B.1.1 Evaluation of body shape editing

We conducted a qualitative comparison with the state-of-
the-art body shape editing method by Ren et al. [14] in the
same way as their paper. Figure 2 shows the results. In
the results of their method, increasing the body size often
causes significant distortion in the torso. In contrast, our
method can create plausible images. Our method can also
handle facial appearance changes that occur along with the
body weight changes.

B.1.2 Evaluation of pose and body shape editing

Figure 3 shows our unprecedented results in which both
poses and body shapes were edited at the same time. Such
simultaneous edits have been infeasible with existing meth-
ods, to the best of our knowledge. The results demonstrate
that our method can edit the target pose and body shape
simultaneously while maintaining the subject’s identity in
terms of clothing and facial features.

B.2. Ablation Study

B.2.1 Facial degradation by VAE

In the LDM used in our method, the face quality is degraded
by simply reconstructing the input image with VAE. This is
because the VAE used in the LDM cannot reconstruct rel-
atively small faces accurately from low-dimensional latent
maps. An example of the degradation is shown in Figure 4,
and the quantitative evaluation metrics are shown in Table 2.
These results warrant our approach that extracts a face re-
gion and refines it separately.

B.2.2 Refinement with weak noise

To find an appropriate noise intensity for our iterative refine-
ment, we experimented with single iterations of refinement
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Figure 2. Qualitative comparison of editing the reference images to the target weights with the method by Ren et al. [14] and ours.
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Figure 3. Qualitative comparison of simultaneous edits of both target’s poses and body shapes in reference images using our method. The
edited results are plausible with identity preservation in terms of clothing and facial features.
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Figure 4. Qualitative comparison of decreased facial quality when
simply reconstructing images using VAE.

Table 2. Quantitative evaluation when images are simply recon-
structed with VAE.

SSIM ↑ LPIPS ↓ FID ↓ ID ↓
Input 0.714 0.243 55.862 0.232
Reconstruction 0.716 0.242 65.484 0.375

Table 3. Quantitative evaluation metrics for a single refinement
with varying noise intensities.

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
10% 19.613 0.717 0.246 59.221
20% 19.650 0.718 0.245 57.808
30% 19.669 0.718 0.244 56.093
40% 19.669 0.718 0.244 56.084
50% 19.561 0.716 0.244 50.748
60% 19.582 0.714 0.245 52.582
70% 19.519 0.712 0.246 51.816
80% 19.433 0.710 0.248 51.592
90% 19.356 0.708 0.250 52.011

Figure 5. Graphs depicting the variations of SSIM and LPIPS
scores with varying noise intensities.

with different noise levels. We increased the noise level
from 10% to 90% in increments of 10 percentage points.
Table 3 summarizes the qualitative evaluation, and Figure 5
shows graphs of SSIM and LPIPS with varying noise in-
tensities. These results revealed that weaker noise tends
to yield better results regarding pixel-level metrics such as
PSNR and SSIM because weaker noise preserves the pro-
jected textures as they are. On the other hand, for more
perceptual metrics such as LPIPS and FID, the values tend
to be optimal around 30% to 50% noise intensity, with per-
formance degrading as the noise intensity deviates from this
range. This pattern suggests that, around 30% to 40% noise
intensity, we can effectively correct unnatural areas while
preserving the texture of the input image. Consequently, we
conclude that weak noise intensities from 30% to 40% seem
effective for refinement. In our approach, we choose 30%
noise intensity to balance computational efficiency while
maintaining effectiveness.
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