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This supplementary material contains:

• Description of build the Body Shape Dataset

• Description of the Multi-layer Try-on Network system

• Detailed statistics of the training and test data splits of
the Body-Diverse dataset.

• Ablation Studies on network structure and outfit en-
coding

1. Body Shape Dataset Construction
We first give the definitions of body shape. Let Ω =

{Ti}NT
i=1 be a set of human body models, where Ti rep-

resent a 3D body model. A body shape set Uk ⊆ Ω is
defined as a subset of Ω whose models share similar char-
acteristics and can be categorized into the same body shape,
where k ∈ [1,K] and K is the number of examined body
shapes. The detailed construction process includes the fol-
lowing steps:
Step 1: Generating SMPL Model. We generate 200,000
3D body models with diverse body sizes to ensure dataset
variety by employing the Skinned Multi-Person Linear
(SMPL) model [3]. SMPL is a learned model that ac-
curately represents various human body sizes in different
poses. The body model is generated according to shape pa-
rameters β and pose parameters θ. However, as we focus on
variations in human body shape, we keep the pose param-
eters constant while generating body models. Thus, a one-
to-one correspondence exists between the body model set
and the shape parameter set. Let FSMPL be the SMPL [3]
model forward function, we denote the body model as Ti =
FSMPL(βi).
Step 2. Measuring Anthropometric Data. We employ
a body measurement tool [5] to acquire the anthropomet-
ric data containing 20 dimensions from the generated 3D
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Figure 1. Body model examples of the proposed body shape
dataset. Both Bottom hourglass and top hourglass have a well-
defined waistline, but their difference lies in their hip-to-bust ra-
tio; triangle and inverted triangle lack a well-defined waistline be-
cause they do not consider the bust-to-waist ratio; Spoon is char-
acterized by a large gap between hip and bust circumference and a
smaller bust-to-waist ratio than the hourglass.

model. Among these 20 measures, the bust, waist, high hip
and hip circumferences are most important because we em-
ploy FFIT [7] to identify the body shape based on these
four measures. In Figure 1, we visualize these circum-
ferences, where the circle’s size indicates the circumfer-
ence’s length. These circumferences are measured by lo-
cating body landmarks based on the regularities of cross-
sectional body shapes. We modify the tool’s localization
criteria to maintain consistency with the body landmarks
defined in FFIT. The obtained anthropometric data is de-
noted as ω = Fmeasure(T), where Fmeasure is the measur-
ing process.
Step 3. Cleaning Invalid Model. To ensure the gener-
ated body models are realistic, we eliminate invalid models
that fall outside the standard range of human height-weight
distribution [2, 4]. Consequently, 11.57% of the generated
body models are retained. Then, we calculate the mean and
variance of the remaining models’ shape parameters β and
use these distributions to generate a new set of 100,000 body
models. This process improves the realism of the newly
generated bodies, as the height and weight are more closely
aligned with the normal distribution of humans.
Step 4. Annotating Body Shape. We employ the FFIT
algorithm [7] to determine the body shape of each SMPL
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model. However, the classification results show that the
distribution of body models across different body shapes is
non-uniform. For instance, out of the 100,000 body mod-
els, only a small portion are identified as the top hourglass
and triangle, with only 120 and 11 models, respectively. To
address this imbalance issue, for each body shape, we com-
pute its specific shape parameter distribution, which is then
used to regenerate body models. This method effectively
enhances the occurrence frequencies of these underrepre-
sented body shapes by optimizing the shape parameters. Fi-
nally, we randomly select 4,000 valid human body models
for each body shape to form the dataset. We display five
body shapes in Figure 1 to visually illustrate the differences
between different body shapes.
Step 5: Capturing Frontal View Image. It is worth not-
ing that we capture the frontal view image for each body
model. This is accomplished by rendering it in a virtual
environment using an orthographic camera. The resultant
image has a resolution of 1024× 512 pixels and is saved in
PNG format. It is imperative to underscore that these frontal
view images hold paramount importance, as they serve as
the foundation for extracting visual-level representations of
human body shapes. We use the notation Fortho to repre-
sent the orthographic projection process, and the resulting
image is denoted as I = Fortho(T).

2. Multi-layer Try-on Network System
The M-VTON system comprises three stages: fashion

key point detection and alignment, fashion segmentation,
and try-on image synthesis.
Fashion Key Point Detection and Alignment. A trained
detection model is first employed to identify the fashion-
oriented key points from clothing images. Its backbone is
a pre-trained pose estimation model [6], and we fine-tune it
on the fashion key point dataset. It outputs the pixel loca-
tions of fashion key points as indicated by blue dots in Fig-
ure 2. By aligning items’ key points with the corresponding
key points of the mannequin, we can calculate each item’s
scaling ratio and pixel locations. These intermediate results
will guide the generation of the try-on images in the synthe-
sis stage.
Fashion Segmentation. A fashion segmentation model is
also utilized to segment an item image into its front and
back pieces. This process is critical for generating a re-
alistic try-on appearance image. We employ the Object-
Contextual Representations model [8] as the backbone and
train it on a new fashion segmentation dataset with pixel-
level annotations. As shown in Figure 2, the purple and
green areas of the segmentation results stand for the front
and back pieces, respectively. They are used in the synthe-
sis stage.
Try-on Synthesis. Based on the previous results, we syn-
thesize rescaled clothing pieces in a predefined wearing or-
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Figure 2. Workflow of M-VTON system comprising three stages:
fashion key point detection and alignment, fashion segmentation,
and try-on image synthesis.

Table 1. Statistics of the Joint Diverse-Body Dataset [1].
Dress Top

type Bott. Hour. Rect. Bott. Hour. Rect.

Train body 18 23 10 18 28 11
clothing 538 444 217 556 530 320

Test body 4 5 2 4 6 3
clothing 123 108 51 138 145 89

Table 2. Statistics of the Disjoint Diverse-Body Dataset [1].
Dress Top

type Bott. Hour. Rect. Bott. Hour. Rect.

Train body 14 18 8 14 22 8
clothing 423 323 95 396 423 308

Test body 4 5 2 4 6 3
clothing 50 58 28 51 98 23

der and place them at corresponding pixel locations to gen-
erate the try-on image, which has a resolution of 1040×680
pixels. We use the symbol X̃ to denote the generated try-on
image.

3. Statistics of Body-Diverse Dataset

The details of the training-test partition for both the joint
and disjoint versions are outlined in Table 1 and Table 2,
respectively. We randomly split the item set and model set
into training and test sets in a ratio of 8:2. Specifically, for
dress (top) dataset, the training set comprises 711 (776) ex-
amples, while the test set encompasses 178 (195) examples.
Following [1], we implement the propagation scheme to
identify missing positive pairs among similar body shapes.
For clarity, after applying the propagation process, it is ex-
emplified that a total of 538 (423) dresses are compatible
with 18 (14) bottom hourglass fashion models. This results
in 173 (288) negative dresses for the joint (disjoint) dataset.
As can be observed, the reduction in the number of trained
models in the disjoint dataset has led to a corresponding de-
crease in the quantity of positive items.



Table 3. Comparison on variations of cross-modal attention.

Structure mAP CP CR CF1 OP OR OF1
dot-product 50.02 39.36 42.70 40.96 65.56 58.89 62.05
multi-layer 52.30 52.63 25.47 34.33 52.63 28.36 36.86
multi-head 58.71 54.27 60.24 57.10 68.05 79.65 73.39
cross-modal 63.14 57.30 64.85 60.84 72.02 80.73 76.13

Table 4. Comparison of encoding outfits w/o-try-on. The bold
numbers indicate a larger value.
Method Outfit Encoding mAP CP CR CF1 OP OR OF1

TDRG [9] separate 49.97 37.54 56.61 45.14 62.78 78.44 69.74
try-on 54.66 50.80 63.60 56.48 65.42 78.85 71.51

M3TR [10] separate 53.90 52.99 57.07 54.95 64.34 78.13 70.57
try-on 61.37 55.92 61.19 58.44 69.37 79.65 74.15

CSRA [11] separate 57.38 55.92 54.59 55.24 69.31 72.81 71.02
try-on 61.38 56.63 61.18 58.82 71.82 76.79 74.22

4. Ablation Studies on Network Structure and
Outfit Encoding

Ablation Study on Network Structure. We test three vari-
ations of the cross-modal attention mechanism, and report
the quantitative results in Table 3. Specifically, we replace
the cross-modal attention with the dot-product attention,
i.e., the weight W is removed from Equation 7 in the main
paper. The performance of the model is observed to de-
crease due to this operation. A possible reason may be at-
tributed to the difference in input modalities, as the attention
module in ViBA-Net receives inputs from different modal-
ities, which is unsuitable for simple dot-product attention.
We further present the results of adopting multi-layer and
multi-head of cross-modal attention. As shown in the Ta-
ble. However, they fail to achieve better results.
Comparing Outfit Encoding On Baselines. We compare
the model performance of three baselines which are trained
using try-on images and separate clothing images in Table 4.
From the table, we can observe a consistent improvement
in performance across all methods when using the try-on
image to represent the outfit. Notably, M3TR achieves a
+7.47, 3.49, and 3.58 improvements on mAP, CF1, and OF1
metrics, respectively. This is reasonable to infer that owing
to the try-on image capturing the interdependent relation-
ships between clothing items, which allows M3TR to learn
the underlying contextual relationships better.
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