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6. Supplementary

Sharing FFN when grafting: Table 9 compares the trade-
offs of having either a shared FFN or two separate FFNs,
using a DeiT-T backbone. When having separate FFNs,
GrafT features are fused after FFNs, and when having a
shared FFN, fusion happens before it. We see that a shared
FFN achieves +1.3% higher accuracy with fewer param-
eters compared to its counterpart. Therefore, we adopt a
shared FFN design in the GrafT by default.

Table 9. Sharing the parameters of backbone-FFN by training the
DeiT-T on ImageNet-1K

Shared FFN Params (M) ↓ FLOPs (G) ↓ Acc. (%) ↑
✗ 8.2 1.2 74.8

✓ 7.9 1.2 (+1.3) 76.1

Relative performance of GrafT with various Transform-
ers: Table 10 shows the backbones in which we integrate
GrafT and their architectural characteristics. Backbones
cover the combination of two types of vertical structures
(Pyramid/Homogeneous), two types of Transformers (Hy-
brid/Pure), and five types of self-attention mechanisms.

Table 10. Characteristics of backbones in terms of vertical struc-
tures (Homogeneous/Pyramid), Transformer type (Hybrid/Pure
Transformer), and attention mechanisms.

Model Ver. Struc. Type Attn. method

MViTv2 [22] Pyramid Hybrid MHSA

MobViT [29] Pyramid Hybrid Inter-patch

MobViTv2 [30] Pyramid Hybrid Separable

Swin [27] Pyramid Transformer Shifted window

CSWin [9] Pyramid Transformer Cross-shaped

DeiT [37] Homogeneous Transformer MHSA

Relative performance of GrafT with mobile backbones
on object detection: Table 11 shows the relative perfor-
mance of GrafT with mobile Transformers on a single shot
object detection task. GrafT improves the mAP of Mob-
ViT by (+0.7% for -XXS ), (+1.6% for -XS), (+1.1% for
-S) with the small addition of complexities. The corre-
ponding increase in (parameters, FLOPs) pairs are (+9%,
6%), (+12%, 5%), (+14%, 5%), respectively. GrafT boosts
the mAP of MobViTv2-0.5 by +1.7% while incurring +8%
more parameters and 2% more FLOPs. It shows that GrafT
is a light-weight module supporting mobile Transformers to
become general-purpose backbones.

Table 11. Relative performance of GrafT with mobile backbones
on a single shot object detection task on the COCO 2017 [25].
GrafT consistently improves the detection performance of Mob-
ViT [29] and MobViTv2 [30].

Model Type Params ↓ FLOPs ↓ Acc. ↑
(M) (G) (%)

MobViT-XXS [29] Hybrid 1.7 0.90 19.9
MobViT-XXS+GrafT Hybrid 1.9 0.91 (+0.7) 20.6
MobViTv2-0.5 Hybrid 2.0 0.92 19.9
MobViTv2-0.5+GrafT Hybrid 2.2 0.94 (+1.7) 21.6

MobileViT-XS [29] Hybrid 2.7 1.89 24.8
MobileViT-XS+GrafT Hybrid 3.1 1.98 (+1.6) 26.4

MobileViT-S [29] Hybrid 5.7 3.48 27.7
MobileViT-S+GrafT Hybrid 6.5 3.65 (+1.1) 28.8

Visualization of self-attention scores: In Figure 4, we
visualize the self-attention maps to understand the benefit
of integrating GrafT. Layer 2, Layer 5, and Layer 10 within
a 12-layer model are used to analyze the self-attention
maps at shallow, middle, and deep layers in Transformers.
We evaluate DeiT-T+GrafT on the validation images in
ImageNet-1K to draw self-attention scores. In the first row
of Figure 4, self-attention captures the overall shape of
cows, human, fences, and trees while being a bit inaccurate
in highlights at Layer 2, focuses on cows and human with
a more accuracy at Layer 5, and attends to only important
parts of cows at Layer 10. In the second row of Figure 4,
self-attention captures the overall shape of mice focusing
on outlines of mice with a bit inaccurate highlights at Layer
2, and refines the outlines at Layer 5 and Layer 10. It shows
that GrafT can provide multi-scale high-level semantics
(i.e., capture global features) even within shallow layers.

Comparison of multi-scale tokens: Table 12 sum-
marizes the difference between GrafT and previous works
on how to deliver high-level semantics. In the homogeneous
structure, GrafT adopts average pooling as downsampling
and learnable bilinear interpolation as upsampling. It is a
faster mechanism than cross attention in CrossViT and it
provides the flexibility of creating various sizes of feature
maps. In the pyramid structure, GrafT is unique in the
sense that it creates multi-scale features at each layer whose
grid sizes are the same as vertical multi-scale features. For
example, Swin-T+GrafT exploits four different scales of
features in each layer at the first stage, as there are four
vertical stages. On the other hand, other models exploit
at most two scales of features. The fusion mechanism
of horizontal multi-scale features follows the consecutive
element-wise addition in FPN [24].



Figure 4. The visualization of the scores of attention maps at different layers of DeiT-T+GrafT. The input images are from the validation
set in ImageNet-1K. GrafT provides multi-scale high-level semantics to the backbone to capture the global features from the early-stage
layer.

Table 12. Approaches to deliver high-level semantics in terms of
their vertical structure, #scales per layer and fusion method.

Model Vertical structure #scales Fusion method

ViT-T (DeiT-T) [37] Homogeneous None None
CrossViT-9 [4] Homogeneous 2 Cross attention

DeiT-T + GrafT Homogeneous 2
Learn. W-Bilinear

+ E-Wise add.

PVT-T [38] Pyramid None None
T2Tt [42] Homogeneous None None
PoolFormer-S12 [41] Pyramid None None
TNT-S [12] Homogeneous 2 LL + E-Wise add.
Swin-T [27] Pyramid None None
RegionViT-S [3] Pyramid 2 Cross attention

Swin-T + GrafT Pyramid 4
Learn. W-Bilinear

+ E-Wise add.

Upsampling components: Table 13 presents the effect
of discrete elements within the upsampling mechanism
as integrated into the GrafT framework. Through the
incorporation of both channel mixing and anti-aliasing
components, the GrafT model attains 76.1% accuracy with
7.9M parameters and 1.2G FLOPs. In cases where the
anti-aliasing or channel mixing elements are individually
omitted, the reduction in accuracy by 0.4% or 1.0%,
respectively, is observed with a marginal decrease in pa-
rameters. It underscores that both anti-aliasing and channel
mixing are effective when employed in conjunction with
bilinear interpolation within the GrafT.

Table 13. The efficacy of incorporating channel mixing and anti-
aliasing elements within the upsampling mechanism.

Channel mixing Anti-aliasing Params (M) ↓ FLOPs (G) ↓ Acc. (%) ↑
✓ ✓ 7.9 1.2 76.1
✓ ✗ 7.8 1.2 (-0.4)75.7
✗ ✓ 7.5 1.2 (-1.0)75.1

Table 14. Replacing local self-attention by convolution module
in GrafT. The GrafT with local self-attention achieves 1.1% better
accuracy with fewer FLOPs and a marginal increase in parameters

Model Params (M)↓ FLOPs (G)↓ Acc. (%)↑
DeiT-T+GrafT 7.9 1.2 76.1

DeiT-T+IR 7.4 1.5 75.0

DeiT-T 5.7 1.3 72.2

Replacing GrafT with convolution modules: Table 14
shows the effectiveness of the current GrafT design
compared to convolution modules. The inverted residual
module (IR) from MobileNetv2 are attached to the DeiT-
T backbone instead of GrafT and trained on ImageNet-1K.
The current GrafT design outperforms DeiT-T+IR by 1.1%
with smaller FLOPs and a marginal increase in Parameters.



Training details for image classification: ImageNet-
1K [8] is a classification benchmark with annotations
of 1000 categories. It contains 1.2M training images
and 50K validation images. In our evaluation, we report
Top-1 accuracy (%) on a single-crop setting along with
complexity metrics (measured in Parameters and FLOPs).
We train our models with the standard settings. For pure
Transformers [9, 27, 37], we run 300 epochs with 224×224
resolution inputs, using timm [39] library. For hybrid
Transformers [29,30], we run 300 epochs with a multi-scale
sampler ranging from 160 to 320 inputs with step-size
32, using CVNets [28] library. We consider the original
hyperparameter settings for each of the backbones and
apply stochastic depths. In MobViT, stochastic depths are
0.0, 0.1, 0.2 for -XXS, -XS, -S. In MobViTv2, stochastic
depths are 0.0 for both v2-0.5, v2-1.0. In DeiT-T, stochastic
depth is 0.0. In Swin, stochastic depths are 0.25, 0.4 for -T,
-S. In CSWin, stochastic depths are 0.1, 0.35 for -XT and
-T. Please note that we design CSWin-XT∗ by modifying
CSWin-T by reducing channels to (48, 96, 192, 384) and
setting the number of layers to (1, 2, 7, 1) in the four stages.

Training details for semantic segmentation:
ADE20K [44] annotates 150 categories for semantic
segmentation. It contains 20K training, 2K validation and
3K testing images. In our evaluations, we use multi-scale
mIoU as the metric (using scales of [0.5, 0.75, 1.0, 1.25,
1.5, 1.75]× the training resolution) and follow a training
procedure similar to Swin [27]. In Table 5, we also report
model complexity metrics such as parameters, FLOPs (for
an input size of 512×2048). We use GrafT backbones pre-
trained on ImageNet-1K [8] for 300 epochs at a 224×224
resolution, and finetune it with the decoder at a 512×512
resolution. We choose UperNet [40] as our decoder, and
implement within the mmsegmentation [7] framework.
Swin-T+GrafT uses the stochastic depth of 0.2.

Training details for object detection: The COCO
2017 dataset [25] consists of 118K images for training,
5K for validation, and 20K for testing. In a single shot
object detection, We use SSDLite [26, 29], a light-weight
object detection backbone, and exploit (320x320) input
to finetune MobViT+GrafT and MobViTv2+GrafT on
the dataset. MobViT-XXS, MobViT-XS, MobViT-
S, MobViTv2-0.5 use stochastic depths of 0.0, 0.1,
0.1, 0.0 respectively and follow standard settings as in
MobViT [29] and MobViTv2 [30]. In two-stage object
detection, we use Mask R-CNN [13] framework to adopt
Swin-T+GrafT pretrained on the ImageNet-1K. For train-
ing, we use the stochastic depth with ratios of 0.1 and
0.2 for 1× (SS) and 3× (MS) schedules, respectively and
follow the original hyperparameter settings as in Swin [27].
Here, 1× (SS) corresponds to 12 epochs with single
scale, 3× (MS) corresponds to 36 epochs with multi-scale.
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