Supplemental Material

1 Dual Gradient Attack Method (DGM)

This supplemental material describes Dual Gradient white-box attack Method(DGM) which is adopted in SQBA attack method. DGM uses dual gradient vectors to effectively find perturbations. The procedure of DGM attack consists of two stages: (1) Generating adversarial perturbation, and (2) Fine-tuning generated perturbation.

1.1 Adversarial Perturbation

An input example $x \in \mathbb{R}^m$ to be estimated by the k-class classifier F(x) can be seen as a data point located in a convex polyhedron [1], whose faces represent classes c_i , where i = 0, 1, ..., k. The orthogonal distance from a class c_i to the data point x denotes the quantified classification probability, and it is expressed as $\Delta(x; c_i)$. The decision boundary of the classifier can be seen as an affine linear equation also in the polyhedron. Since the primary objective of adversarial attack is to modify input example x to mislead a target model, the true class c^{\dagger} and an adversarial class \tilde{c} need to be considered.

The orthogonal distance between c^{\dagger} and x is smaller than other classes in the polyhedron as $\Delta(x; c^{\dagger}) < \Delta(x; c^{i}), \forall c^{\dagger} \neq c^{i}$. To mislead the target model, therefore, $\Delta(x; c^{\dagger})$ needs to be increased by moving example x sufficiently to an adversarial region where belongs to another class c^{i} . DGM searchs the optimal path to transport x by utilising two vectors, g^{-} and g^{+} , which are calculated with respect to the true class c^{\dagger} and a potential adversarial class c^{i} respectively. The vector g^{-} has the negative direction to the class, therefore, it moves x away from the true class. In contrast the positive directional vector g^{+} transports x closer to the adversarial class. The gradient vectors are calculated as:

$$g^{+/-} = \begin{cases} l_2 : \nabla_F f_c(x) / \max\left(\nabla_F f_c(x)\right) \\ l_\infty : \operatorname{sign}\left(\nabla_F f_c(x)\right) \end{cases}$$
(1)

where $\nabla_F f_c(x)$ is a gradient vector obtained from the backward process of F(x) with input example x and associated class c. DGM iteratively conducts such process to efficiently find the optimal direction of adversarial perturbation vector μ_t as:

$$\mu_t = (-\alpha_t)g_t^- + (1 - \alpha_t)g_t^+$$
(2)

where $\alpha_t \in [0, 0.3]$ is a penalty parameter applied to both directional vectors. The penalty parameter is used to help the stable convergence in searching an optimal vector μ_t , and updated in every iteration as:

$$\alpha_t = \min\left(1/e^{4\lambda}, \ 0.3\right), \quad \text{where } \lambda = \frac{f_{c_t^i}(x_t^\prime)}{\left(f_{c^\dagger}(x_t^\prime) + f_{c_t^i}(x_t^\prime)\right)} \tag{3}$$

Algorithm 1 DGM Adversarial Example Computation

```
input: example x, true class c^{\dagger}, classifier f
output: adversarial example \tilde{x}
while TRUE do
\{c_t^0, c_t^1, ..\} = \text{Sort}(f(x'_t), \text{ descend})
if c_t^0 \neq c^{\dagger} then Break; end
\tilde{c} = c_t^1
\alpha_t = \text{Equation } (3) \leftarrow \tilde{c}, c^{\dagger}
g_t^+ = \text{Equation } (1) \leftarrow \tilde{c}
g_t^- = \text{Equation } (1) \leftarrow c^{\dagger}
\mu_t = \text{Equation } (2)
x'_{t+1} = \text{Equation } (4)
t = t + 1
end while
\tilde{x} = \text{Tune}(x'_t)
```

Algorithm 2 DGM Adversarial Example Tuning

input: example x, initial adversary x', true class c^{\dagger} , classifier f output: adversarial example \tilde{x} $t = 0, x'_t = x'$ while TRUE do $\tilde{x} = x'_t$ $\mathcal{J} = \text{MSE}(x, x'_t)$ $x'_t = \text{ADAM}(x'_t, \mathcal{J})$ $c'_t = \arg \max[f(x'_t)]$ if $c'_t = c^{\dagger}$ then Break; end t = t + 1end while $\tilde{x} = x'_t$

Finally an intermediate adversarial example is calculated with a scaling factor $\epsilon \leq 1$, which is a small positive value as

$$x'_{t+1} = \operatorname{clamp}\left(x'_t + \epsilon \mu_t\right)|_{[\min(x), \max(x)]}.$$
(4)

Algorithm 1 outlines the process to find an adversarial example with DGM method.

1.2 Adversary Tuning

Attack method discussed in the previous section focuses on the effectiveness in finding an adversarial example \tilde{x} , which successfully leads to the misclassification with a high classification probability yet. One other objective of the attack is finding the minimum perturbation to make the adversarial example \tilde{x} sufficiently close to the input example x. Input example can be seen as a fixed data point. Therefore, the goal of this optimisation is to find δ that minimises l_2 distance between x and \tilde{x} . DGM solves such problem by formulating a simple objective of the iterative optimisation

with Mean Square Error (MSE) as:

$$\min\left(\mathrm{MSE}(x,\tilde{x})\right),\quad \text{such that }\tilde{x}\in[\min(x),\max(x)]^m\tag{5}$$

where $\tilde{x} = x + \delta$ is an adversarial example. To achieve the goal to find δ that minimises $MSE(x, \tilde{x})$, ADAM [2] optimiser is deployed in DGM method as detailed in Algorithm 2.

Figure 1: Examples of targeted attack. DGM l_2 attack is applied to the CIFAR-10 dataset performing the targeted attack for each source/target pair. First column is the clean images

References

- [1] S.M.M. Dezfooli and A. Fawzi and P. Frossard and E.P.F. Lausanne "DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks" IEEE Conference on Computer Vision and Pattern Recognition, 2016.
- [2] D.P. Kingma and J. Ba "Adam: A Method for Stochastic Optimization" International Conference on Learning Representation, 2015.