
Supplemental Material

1 Dual Gradient Attack Method (DGM)

This supplemental material describes Dual Gradient white-box attack Method(DGM) which is
adopted in SQBA attack method. DGM uses dual gradient vectors to effectively find perturbations.
The procedure of DGM attack consists of two stages: (1) Generating adversarial perturbation, and
(2) Fine-tuning generated perturbation.

1.1 Adversarial Perturbation
An input example x ∈ Rm to be estimated by the k-class classifier F (x) can be seen as a data
point located in a convex polyhedron [1], whose faces represent classes ci, where i = 0, 1, ..., k.
The orthogonal distance from a class ci to the data point x denotes the quantified classification
probability, and it is expressed as ∆(x; ci). The decision boundary of the classifier can be seen as
an affine linear equation also in the polyhedron. Since the primary objective of adversarial attack
is to modify input example x to mislead a target model, the true class c† and an adversarial class
c̃ need to be considered.

The orthogonal distance between c† and x is smaller than other classes in the polyhedron as
∆(x; c†) < ∆(x; ci), ∀ c† ̸= ci. To mislead the target model, therefore, ∆(x; c†) needs to be
increased by moving example x sufficiently to an adversarial region where belongs to another class
ci. DGM searchs the optimal path to transport x by utilising two vectors, g− and g+, which are
calculated with respect to the true class c† and a potential adversarial class ci respectively. The
vector g− has the negative direction to the class, therefore, it moves x away from the true class. In
contrast the positive directional vector g+ transports x closer to the adversarial class. The gradient
vectors are calculated as:

g+/− =
{

l2 : ∇F fc(x)/max (∇F fc(x))
l∞ : sign (∇F fc(x))

(1)

where ∇F fc(x) is a gradient vector obtained from the backward process of F (x) with input example
x and associated class c. DGM iteratively conducts such process to efficiently find the optimal
direction of adversarial perturbation vector µt as:

µt = (−αt)g−
t + (1− αt)g+

t (2)

where αt ∈ [0, 0.3] is a penalty parameter applied to both directional vectors. The penalty param-
eter is used to help the stable convergence in searching an optimal vector µt, and updated in every
iteration as:

αt = min
(
1/e4λ, 0.3

)
, where λ =

fci
t
(x′

t)(
fc†(x′

t) + fci
t
(x′

t)
) (3)

1



Algorithm 1 DGM Adversarial Example Computation
input: example x, true class c†, classifier f
output: adversarial example x̃
while TRUE do
{c0

t , c1
t , ..} = Sort(f(x′

t), descend)
if c0

t ̸= c† then Break; end
c̃ = c1

t

αt = Equation (3) ← c̃, c†

g+
t = Equation (1) ← c̃

g−
t = Equation (1) ← c†

µt = Equation (2)
x′

t+1 = Equation (4)
t = t + 1

end while
x̃ = Tune(x′

t)

Algorithm 2 DGM Adversarial Example Tuning
input: example x, initial adversary x′, true class c†, classifier f
output: adversarial example x̃
t = 0, x′

t = x′

while TRUE do
x̃ = x′

t

J = MSE(x, x′
t)

x′
t = ADAM(x′

t,J )
c′

t = arg max[f(x′
t)]

if c′
t == c† then Break; end

t = t + 1
end while
x̃ = x′

t

Finally an intermediate adversarial example is calculated with a scaling factor ϵ ≤ 1, which is a
small positive value as

x′
t+1 = clamp

(
x′

t + ϵµt
) ∣∣

[min(x),max(x)]. (4)

Algorithm 1 outlines the process to find an adversarial example with DGM method.

1.2 Adversary Tuning
Attack method discussed in the previous section focuses on the effectiveness in finding an adversarial
example x̃, which successfully leads to the misclassification with a high classification probability
yet. One other objective of the attack is finding the minimum perturbation to make the adversarial
example x̃ sufficiently close to the input example x. Input example can be seen as a fixed data
point. Therefore, the goal of this optimisation is to find δ that minimises l2 distance between x
and x̃. DGM solves such problem by formulating a simple objective of the iterative optimisation

2



with Mean Square Error (MSE) as:

min (MSE(x, x̃)) , such that x̃ ∈ [min(x), max(x)]m (5)

where x̃ = x + δ is an adversarial example. To achieve the goal to find δ that minimises MSE(x, x̃),
ADAM [2] optimiser is deployed in DGM method as detailed in Algorithm 2.

Figure 1: Examples of targeted attack. DGM l2 attack is applied to the CIFAR-10 dataset performing the targeted attack for
each source/target pair. First column is the clean images

References

[1] S.M.M. Dezfooli and A. Fawzi and P. Frossard and E.P.F. Lausanne ”DeepFool: A Simple and
Accurate Method to Fool Deep Neural Networks” IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

[2] D.P. Kingma and J. Ba ”Adam: A Method for Stochastic Optimization” International Confer-
ence on Learning Representation, 2015.

3


