
Supplementary Material for Layer-wise Auto-Weighting for Non-Stationary
Test-Time Adaptation

Junyoung Park1 Jin Kim1 Hyeongjun Kwon1 Ilhoon Yoon1 Kwanghoon Sohn1,2∗

1Yonsei University 2Korea Institute of Science and Technology (KIST)
{jun yonsei, kimjin928, kwonjunn01, ilhoon231, khsohn}@yonsei.ac.kr

In this document, we first complement the quantitative
comparisons with encoder type variations (Sec. A).
Moreover, we provide ablation studies (Sec. B) including
visualization of diagonals of Fisher Information Matrix
(FIM) of our proposed method. Our code is available at
https://github.com/junia3/LayerwiseTTA.

A. Additional Results

In this section, we conducted a comparative analysis
between our proposed method and previous Continual Test-
Time Adaptation (CTTA) approaches, including TENT [9],
BN-1 [7], AdaContrast [1], and CoTTA [10].

A.1. Comparison with model variation

To validate the adaptive applicability of our proposed
method across various encoder types, we conducted
additional experiments. We used several distinct encoder
configurations for evaluation. In the CIFAR-C benchmark,
we used ResNext-29, WideResNet-28, WideResNet-40
from [2], and the ResNet-50 model from [6]. For simplicity,
we refer to these models as RNXT29, WRN28, WRN40,
and RN50, respectively. However, the ImageNet-C [3] pre-
trained model parameters for RNXT29 and WRN are not
available in the previous benchmark [2]. Therefore, we
conducted experiments using pre-trained parameters from
other benchmarks for ResNext-50 [11] and WideResNet-
50 [12] models. To simplify, we refer to these models
as RNXT50 and WRN50, respectively. Although the pre-
trained ResNet-50 [4] for ImageNet-C differs from the one
in [6], we will use the term RN50 for convenience.

Comparison on CIFAR-10C. Table 1 presents the average
classification errors on CIFAR-10C [5] with the CTTA
setting using four distinct encoder configurations. Our
method demonstrates an average mean error of 9.8%,
15.7%, 11.0%, and 12.8% in each model framework,
surpassing all previous source-free TTA methods across all
encoder architectures. Previously proposed methods, such
as TENT [9], CoTTA [10] and AdaContrast [1], exhibited

Table 1. Classification mean error (%) for the CIFAR-10C online
CTTA task on the highest corruption severity level 5. We report
the performance of each method averaged over 5 runs.

Method RNXT29 [2] WRN28 [2] WRN40 [2] RN50 [6]

Source 18.0 43.5 18.3 48.8
BN-1 [7] 13.3 20.4 14.6 16.1

TENT-cont. [9] 14.8 20.7 12.5 14.8
CoTTA [10] 11.0 16.2 12.7 13.1

AdaContrast [1] 11.0 18.5 11.9 14.5
Ours 9.8 15.7 11.0 12.8

favorable performance in specific network structures but
struggled to achieve stable adaptation performance across
all network architectures. In contrast, our method
consistently delivers strong performance, regardless of the
network structure, confirming its effectiveness.

Comparison on CIFAR-100C. Additionally, we conducted
evaluations on CIFAR-100C [5] using the CTTA setting
with our proposed method. In Table 2, we can observe
similar issues as with previous approaches in terms of
model variations. TENT [9] shows improved performance
in WRN40 and RN50 except for RNXT29 than BN-
1, which simply updates batch normalization statistics.
Regarding CoTTA [10] and AdaContrast [1], they show
improvement in RNX29 and RN50 but exhibit performance
degradation in WRN40. Our method demonstrates
outstanding performance across all variations, confirming

Table 2. Classification mean error (%) for the CIFAR-100C online
CTTA task on the highest corruption severity level 5. We report
the performance of each method averaged over 5 runs.

Method RNXT29 [2] WRN40 [2] RN50 [6]

Source 46.4 46.8 73.8
BN-1 [7] 35.4 39.3 43.7

TENT-cont. [9] 60.9 36.9 44.2
CoTTA [10] 32.5 38.2 37.6

AdaContrast [1] 33.4 37.1 41.3
Ours 30.9 35.0 36.2

https://github.com/junia3/LayerwiseTTA


its model-agnostic usability. It achieves 30.9%, 35.0%, and
36.2% with each encoder.

Comparison on ImageNet-C. We also conducted
evaluations on ImageNet-C [3] with CTTA setting using
our proposed method. Although BN-1 [7], which does
not require optimization, improved performance compared
to the source approach, its performance significantly
declined compared to optimization-based approaches.
In this experiment, TENT [9] outperforms CoTTA [10]
and AdaContrast [1], both of which update the entire
set of parameters. TENT reports 62.6%, 58.7%, and
57.7% accuracy in each architecture. Nevertheless, we
demonstrate that our method is superior to others in
all model frameworks. Our proposed method achieves
accuracy rates of 60.1%, 57.5%, and 56.4%, improving by
2.6%, 2.3%, and 1.3% over TENT, respectively.

Table 3. Classification mean error (%) for the ImageNet-C online
CTTA task on the highest corruption severity level 5. We report
the performance of each method averaged over 5 runs.

Method RN50 [4] RNXT50 [11] WRN50 [12]

Source 82.0 78.9 78.9
BN-1 [7] 68.6 67.1 66.2

TENT-cont. [9] 62.6 58.7 57.7
CoTTA [10] 62.7 59.8 57.9

AdaContrast [1] 65.5 63.1 63.3
Ours 60.1 57.5 56.4

B. Ablation study
B.1. Ablations with domain-level FIM

In all experimental settings, we used domain-level Fisher
Information Matrix (FIM), which accumulates information
from continuous domain samples, rather than solely relying
on temporal FIM. To verify the effectiveness of our method,
we further introduced a hyperparameter γ for the domain-
level FIM in Eq. (4) of our main paper, inspired by [8]:

Ĩ lt = γĨ lt−1 + I lt. (1)

In Table 4, we compared the performance of CTTA by
varying the γ of the regulated version of FIM from 0 to
1. Since γ is set to be less than 1, we can adjust our

Table 4. Mean classification error (%) with varing γ.

γ 0 0.3 0.6 0.9 Ours

CIFAR-10C 16.36 16.24 16.01 15.95 15.74
CIFAR-100C 31.77 31.74 31.70 31.58 30.91
ImageNet-C 60.94 60.84 60.79 60.67 60.07

0.06

0
Block 1 Block 2 Block 3

Layer-wise weight (Gaussian noise)

Layer-wise weight (Defocus blur)Layer-wise weight (Source)

0.06

0
Block 1 Block 2 Block 3

Figure 1. Layer-wise weights comparison between the source and
target domains.

0.04

0.00

0.03

0.02

0.01

So
u
rc
e

G
au
ss
ia
n

D
ef
o
cu
s

Figure 2. Diagonal of the FIM per layer with the source domain,
gaussian noise domain and defocus blur domain in the CIFAR-
10C dataset. The x- and y-axes represent the layer index and
the diagonal values of the layer-wise FIM, respectively. This
demonstrates that our method is robust to any kind of domain
distribution.

domain-level FIM from the batch level to the domain level.
For CIFAR-10C [5], our method achieved an accuracy
of 15.74%, representing a 0.62% improvement over the
performance when λ = 0. Our method exhibits an
improvement of 0.86% for CIFAR-100C [5] and 0.87% for
ImageNet-C [3]. This demonstrates that our domain-level
FIM outperforms the FIM which focus on short intervals.

B.2. Ablations with exponential min-max scaler

In addition to our main paper, we show additional
ablations on the hyperparameter τ of the exponential min-
max scaler in Eq. (7) of our main paper. Table 5 provides
additional results for τ values ranging from 0 to 1.2 for
each dataset in the CTTA benchmark. When τ = 1, it
represents the result obtained by applying simple min-max
normalization to the weight importance from domain-level
FIM. Conversely, for τ = 0, it assumes that all weight
importance values have equal weights of 1. As τ approaches
zero, layer-wise weights tend to have relatively uniform
values, and the overall performances diverge during the
adaptation process.



Table 5. Mean classification error (%) with varying τ .

τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

CIFAR-10C 89.30 89.35 88.85 86.03 78.28 65.92 39.55 19.96 17.74 16.72 15.74 15.97 16.20
CIFAR-100C 37.16 33.98 32.77 32.12 31.83 31.75 30.91 31.42 32.16 32.42 32.76 33.03 33.30
ImageNet-C 99.57 99.39 98.72 97.10 94.79 90.95 77.29 69.89 63.44 61.08 60.07 61.21 61.65

B.3. Layer-wise learning weights in each domain

In the main paper, we attempted to apply layer-wise
learning rates according to the domain shift problem. From
this perspective, it should also be noted that if there
is no domain shift, the learning weights will assume a
minimal value. To demonstrate this, we compare the
learning weights from the source domain with those from
the target domain. Specifically, for the target domain, we
choose gaussian noise and defocus blur for comparison.
In Figure 1, we compare the learning weights measured
by the pre-trained model on the CIFAR10-to-10C dataset
without applying the exponential min-max normalization
in Eq. (7) of our main paper. The learning weights for
gaussian noise/defocus blur vary by layer depending on the
type of corruption, demonstrating that our model can adapt
its learning rate to different types of domain shifts. On the
other hand, the learning weights in the source domain have
a smaller value than gaussian noise/defocus blur domains.
Note that, the pre-trained model exhibits a flatter log-
likelihood surface for the source data than the target data
since the pre-trained parameters are already optimized on
the source domain. From this, we conjecture that our
method is capable of identifying the importance of layers by
referring to the surface information of the log-likelihood.

B.4. Layer-wise diagonal of FIM in each domain

In our proposed method, layer-wise learning weights
are calculated as the trace of the FIM. To analyze this, in
Figure 2, we visualize the diagonal of the FIM in gaussian
noise domain and defocus blur domain. In comparison to
the source domain, we demonstrate that the lower diagonal
values of the FIM within layer θl signify the convergence of
that layer, offering advantages in representing a particular
domain distribution. Since these diagonal elements reflect
the curvature of each layer’s distribution with respect to
the log-likelihood of model outputs, we can establish that
our method efficiently leverages layer sharpness in layer-
wise learning. Therefore our method, which selects layers
to optimize using Hessian approximation with FIM, can
effectively employ auto-weighting to identify layers for
preservation or concentrated adaptation.

References
[1] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna

Ebrahimi. Contrastive test-time adaptation. In CVPR, 2022.

1, 2
[2] Francesco Croce, Maksym Andriushchenko, Vikash

Sehwag, Edoardo Debenedetti, Nicolas Flammarion, Mung
Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a
standardized adversarial robustness benchmark. In NeurIPS,
2021. 1

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 1, 2

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 1, 2

[5] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 1, 2

[6] Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste
Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi. Ttt++:
When does self-supervised test-time training fail or thrive?
In NeurIPS, 2021. 1

[7] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver
Bringmann, Wieland Brendel, and Matthias Bethge.
Improving robustness against common corruptions by
covariate shift adaptation. In NeurIPS, 2020. 1, 2

[8] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina,
Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan
Pascanu, and Raia Hadsell. Progress & compress: A scalable
framework for continual learning. In ICML, 2018. 2

[9] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno
Olshausen, and Trevor Darrell. Tent: Fully test-time
adaptation by entropy minimization. In ICLR, 2021. 1, 2

[10] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai.
Continual test-time domain adaptation. In CVPR, 2022. 1, 2

[11] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In CVPR, 2017. 1, 2

[12] Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. In BMVC, 2016. 1, 2


	. Additional Results
	. Comparison with model variation

	. Ablation study
	. Ablations with domain-level FIM
	. Ablations with exponential min-max scaler
	. Layer-wise learning weights in each domain
	. Layer-wise diagonal of FIM in each domain


