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A. Overview
In this supplementary material, we further demonstrate

our experimental setup and provide additional results that
the scene geometry is well regressed. First, we explain
the total loss formulation in our training process in Sec. B.
Then, we describe implementation details with image near-
far bound determination by neural points in Sec. C and pro-
vide additional results for dynamicsness map of novel views
in Sec. D. Finally, we demonstrate failure cases in Sec. E.

B. Losses
Our optimization process involves utilizing the loss func-

tions Lrec, Lgeo, Ldepth, and Lmask. These loss functions
are either modifications of those used in DVS [1] or newly
introduced in this paper. To train Point-DynRF more stable,
we also incorporate with a depth order loss Lorder intro-
duced in DVS [1] and a sparsity loss Lsparse introduced in
Point-NeRF [5].

Depth Order Loss While the depth adjust loss helps op-
timize the overall scene geometry, there are inherent chal-
lenges in accurately determining the distance between dy-
namic objects and the background. Therefore, we use depth
order loss Lorder to allow the dynamic radiance fields to be
regularized via a frame-by-frame depth map. Since regu-
larizing the dynamic radiance fields with per-frame depth
maps has scale and shift ambiguities as mentioned ear-
lier, we leverage the volume rendering process of Dynamic
NeRF to propose Lorder as:

Lorder =

N∑
i=1

∑
uv

∥D̃(riuv, i,Pi)− D̃d
(riuv, i,Pi,d)∥22. (1)

Sparsity Loss Following the point-based representation,
we apply a sparsity loss Lsparse on the point-wise rigidness
to enforce it to be close to zero or one as:

Lsparse =
∑
i

(log(γi) + log(1− γi)). (2)

Jumping Skating Truck Balloon1 Balloon2 Playground

Near Bound Far Bound

(epoch) (epoch)

Figure 1. Image Near-Far Bound Determination.

Total Training Loss Formulation We formulate a recon-
struction loss Lrec, a scene geometry loss Lgeo, a depth ad-
just loss Ldepth, a depth order loss Lorder, a mask adjust
loss Lmask and a sparsity loss Lsparse, to train our Point-
DynRF and neural points. Specifically, we define λfull

rec = 3,
λs
rec = 1, λd

rec = 1 for the reconstruction loss. For the
scene geometry loss, we define λflow = 0.1, λs

miss = 1,
λd
miss = 1. Finally, we define λdepth = 0.1, λorder = 0.1,

λmask = 0.1, and λsparse = 0.0002 to formulate the final
loss as:

Ltotal = Lrec + Lgeo + λdepthLdepth + λorderLorder+

λmaskLmask + λsparseLorder.

C. Implementation Details.
We randomly sampled 1024 rays in a batch, and each ray

was assigned up to 32 sampling points. We used COLMAP
to estimate the camera poses and resized all images into
a resolution of 480 × 272. Also, we initialized our scale
and shift parameters by using near and far bounds from
COLMAP. We trained Point-DynRF for 250k iterations,
and training takes about 20 hours on a single NVIDIA
Geforce RTX 3090 GPU.

Near-Far Boundary Determination As our Point-
DynRF is built on Point-NeRF [5] representation, dynamic
radiance fields are regressed in 3D world coordinates, not
in NDC space used by previous methods. Moreover, we
need to render the far background as well, so we set the im-
age near-far bound dynamically associated with the neural
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Figure 2. Comparison to baselines on NVIDIA Dynamic Scene Dataset [6].

Figure 3. Dynamicsness Maps for novel views.

points. Specifically, we set the image near boundary to be
the depth for the nearest neural point multiplied by 0.9, and
the image far boundary to be the depth for the farthest neu-
ral point multiplied by 1.1. Figure 1 shows the convergence
of the image near-far boundary of the scenes in the Dynamic
Scene Dataset [6] during training. This result confirms that
the scene geometry is stably trained and refined the initial-
ized scene geometry well.

D. Additional Results

Additional Qualitative Results. We further provide ad-
ditional qualitative results on Dynamic Scene Dataset [6] .
Point-DynRF generates more realistic images compared to
previous methods, and the human face in the third row of
Fig. 2 confirms that Point-DynRF produces much sharper
images, while other methods either fail to synthesize or pro-
duce blurry images. We also provide a video result of a

causally captured monocular video that our Point-DynRF
generates realistic images while the state-of-the-art method
DVS [1] suffers from duplicated dynamic objects when ren-
dering from a fixed viewpoint.

Our foreground masks (M1, . . . ,MN ) are also opti-
mized during the training, so we provide dynamicsness
maps for novel views, as shown in Fig 3. For each novel
view, our Point-DynRF can render blending weights by us-
ing the volume rendering process. These dynamicsness
maps for novel views confirm that our Point-DynRF well
represents dynamic regions in the scene, and we can see
that the static representation in the center of the person in
the Playground Sequence is due to the fact that all the se-
quences in the input video for that region are learned as dy-
namic regions and represented as background by the miss
ray marching scheme.

E. Failure Cases
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Figure 4. Failure Case.

While Point-DynRF optimizes well the ambiguous ini-
tial geometry and foreground masks, it fails to represent the
scene if the neural point clouds are unnaturally initialized.
A combination of inaccurate camera pose, depth map, and
foreground masks sometimes unnaturally initialize neural
point clouds where background points are closer to the cam-
era than dynamic points as shown in Fig. 4. In this failure



case, Point-DynRF falls short of distinguishing background
points in front of the dynamic objects even addressing the
scale ambiguity, and novel views also contain artifacts on
these background points.
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