
Supplementary Material
In Section 7 we include a qualitative comparison with

concurrent structure preserving methods, demonstrating
how these methods often edit objects unmentioned by the
text prompt. In Section 8 we discuss details regarding the
MS-COCO ShapePrompts benchmark, in Section 9 we dis-
cuss details regarding our annotator evaluation, and in Sec-
tion 10 we report additional ablations. Finally, we show a
variety of additional examples from our method including
success and failure cases in Section 11 as well as inferred
shape edits, inter-class edits, and outside edits in Section 12.

7. Qualitative Comparison with Concurrent
Structure Preserving Methods

We compare our method with concurrent work [2,19,35].
We can see that our method is able to perform better local-
ized edits on a real image. Because these methods lack an
explicit shape, they often change irrelevant objects that are
not specified in the text prompt. In Row 2, Col 1-3 not only
is the horse transformed into a robot but also the man. In
Row 5, Col 3, 5 the wall that was present in the real image
disappears. In contrast, the variant of our method that uses
automatically inferred shapes (thereby requiring the same
amount of input as the structure preserving methods) is able
to perform edits that only modify the object of interest with-
out disturbing the background. We used the official code-
bases released by the respective baselines and generated re-
sults using their default hyperparameter settings.

8. MS-COCO ShapePrompts Details
Prompts For our MS-COCO ShapePrompts benchmark we
design a set of prompts where it is possible to simultane-
ously synthesize an object that is shape faithful and text
aligned (as opposed to prompts entangled with shape, i.e.,
transforming “chihuahua dog” to “poodle dog” while re-
specting shape is difficult because poodles are character-
ized by floppy ears and fluffy fur). While our method is
able to perform inter-class edits as seen in Figure 20, we fo-
cus our experiments on intra-class edits which make more
sense given the shape constraint (e.g. some hyper-specific
shapes like the silhouette of an elephant only make sense
when edits are done within the object class). For this rea-
son we design prompts for each object class as seen in Fig-
ure 10. These prompts were inspired by examples from
prior work [1, 8] and a search engine with paired prompts
and synthetic images from Stable Diffusion [28].
Shape Faithfulness Metric To measure shape faithfulness
we use the pretrained segmentation model MaskFormer [4].
We demonstrate that the model makes meaningful pre-
dictions on synthetic images in Figure 11. Even more,
the model’s predictions are reasonably robust to out-of-
distribution variants of the object class, such as “lego truck.”

Figure 10. Prompts from the MS-COCO ShapePrompts bench-
mark.

Figure 11. Synthetic images and their corresponding predicted
segmentation and mIoU. Out-of-distribution variants of the object
class, such as a truck made of legos, are still segmented correctly.

We use the segmentation model to compute mean intersec-
tion over union (mIoU). We compute mIoU on a per-sample
basis (i.e., we average the IOU of each object regardless of
size) as opposed to a per-pixel basis (which is typically used
in semantic segmentation works) since it is equally impor-



Approach Guidance Scale KW-mIoU mIoU (") FID (#) CLIP (")

Real Images N/A 86.5 78.6 - 0.16

(1) SD 7.5 30.9 52.5 46.2 0.21
(2) SD + DDIM Inv 7.5 39.8 61.2 42.8 0.21
(3) SD + DDIM Inv + Re-Weight (Ours w/o IOA) 3.5 46.2 59.6 40.6 0.21
(4) SD + DDIM Inv + Re-Weight + Token Inside-Outside Attn 3.5 48.1 62.9 40.6 0.21
(5) SD + DDIM Inv + Re-Weight + Soft Inside-Outside Attn 3.5 51.4 66.2 40.2 0.21
(6) SD + DDIM Inv + Re-Weight + Hard Inside-Outside Attn (Ours) 3.5 54.8 67.6 39.0 0.21

Table 2. Ablations on MS-COCO ShapePrompts (validation set).

Figure 12. Shape signal from “copy background” is weak in early
timesteps. In both examples we only use shape guidance in the
first half of generation, where Inside-Outside Attention (+IOA) is
able to provide stronger shape signal.

Figure 13. Comparison between mIoU and Keypoint-Weighted
mIoU (KW-mIoU). Note that in this example P2P [8] receives a
high mIoU score even though the edited objects are incorrectly
scaled or cut off. By weighting each sample’s mIoU with the per-
centage of correct keypoints (PCK) to compute the KW-mIoU, we
can measure shape faithfulness more reliably.

tant to synthesize both small and large objects in a shape-
faithful fashion. We set all pixels outside the mask to a null
prediction to compute mIoU only within the edited mask re-
gion. We do this because in some settings (e.g. MS-COCO
instance masks) the mask may specify one object instance
out of multiple to edit, but our segmentation model would
identify all instances of the same category, which would re-

sult in a diluted mIoU score. Additionally, for all methods
that use “copy background” the background should remain
identical to the original image.

In addition to mIoU, we introduce a new metric called
Keypoint-Weighted mIoU (KW-mIoU). One issue with the
standard mIoU metric is that edited objects that are incor-
rectly scaled or cut off could still get a very high mIoU
if they fully occupy the shape (see Figure 13, Col 2). In
order to mitigate this issue, we report KW-mIoU for an-
imal classes (horse, dog, cat, elephant) where we weight
each sample’s mIoU by the percentage of correct keypoints
(PCK) as computed between the source and edited images.
We report KW-mIoU for animal classes only as we were
not able to find a robust object pose estimation model with
open-vocabulary capacities and reliable performance. By
incorporating pose information, the proposed metric is able
to be more sensitive to scale and object parts, and thus
measure shape faithfulness more reliably. We use an an-
imal keypoint detection model HRNet [32] pretrained on
AP-10K dataset [39] as provided by https://github.
com/open-mmlab/mmpose.

9. Annotator Evaluation Details
Our annotator evaluation included 25 total people spread

across 5 evaluations (Ours vs. Blended Diffusion, Ours vs.
SD-Inpaint, Ours vs. SDEdit + Shape, Ours vs. P2P +
Shape, Ours vs. P2P vs. P2P + Shape). We asked each
annotator to rate 100 samples, where they were told that
they would be “rating AI-edited images, where the goal is to
edit one object according to a text prompt while maintaining
its shape.” Each sample was formatted as pictured in Fig-
ure 14, in the grid the first column (“Original”) corresponds
to the original image, the second column (“A”) corresponds
to an edited image, and the third column (“B”) corresponds
to another edited image. To help annotators judge faith-
fulness in addition to the first row (“Full Image”) we also
provide the second row (“Masked Object”) which masks
the full image according to the shape of the original object.
Along the metrics of shape faithfulness, text alignment, and
image realism we asked annotators to rate whether synthetic
image A or B performed better, or whether they “Tie.” We
define the metrics using the instructions seen in Figure 15.



Figure 14. Screenshot of our annotator evaluation. People were
asked to compare images edited by our method versus a baseline
in anonymized and randomized order and rate (1) shape faithful-
ness, (2) text alignment, (3) image realism. In our final evaluation
comparing Ours vs. P2P vs. P2P + Shape they also rated (4) best
overall edit.

We also gave annotators the option to mark whether one
of the synthetic image makes no substantial edit to the orig-
inal object (i.e. the image copies and recolors the same
object), which would be unfairly marked as having bet-
ter shape faithfulness and image realism at the cost of text
alignment under our evaluation standard. We removed these
marked samples from our final comparison, resulting in the
removal of less than 10% of samples from the 2500 total
samples (from 25 annotators rating 100 images each) across
all evaluations.

Figure 15. Metric definitions given as reference in the annotator
evaluation.

10. Additional Ablations
We report an ablation study in Table 2. (1) uses a stan-

dard guidance scale of 7.5 and copies the background of the
real image onto the prediction at each timestep as done in
Blended Diffusion [1], (2) uses DDIM inverted noise dur-
ing the generation process, (3) re-weights cross-attention
maps based on the change between Psrc and Pedit as done
in P2P [8]1, (4) applies Inside-Outside Attention only to
the cross-attention layers (Token Inside-Outside Attn), (5)
applies Inside-Outside Attention with a hard mask for the
cross-attention and soft mask for the self-attention layers
(Soft Inside-Outside Attn), and (6) applies Inside-Outside
Attention with a hard mask for both the cross- and self-
attention layers (Hard Inside-Outside Attn), the design used
in our final method. Comparing (1) and (2), we show that
using DDIM inverted noise helps in both mIoU and FID.
For (3), we empirically find that higher guidance scale,
when used in combination with DDIM inversion, makes
the model rely less on the the inverted noise, resulting in
less realistic editing. However, we find that simply lower-
ing the guidance scale leads to degradation in text faithful-
ness. Using cross-attention re-weighting mitigates this issue
and allows us to achieve better image realism with similar
performance in shape and text faithfulness. In (4), when
we apply the Inside-Outside Attention mechanism only to
the cross-attention layers we observe a small boost in mIoU
with the same FID score, and when we apply it to both the
cross- and self- attention layers in (5) we observe a more
significant boost of 6.6 points in mIoU and 0.4 points in
FID from (3). Comparing (5) and (6) we find that using
a hard mask for Inside-Outside Attention performs better
than using a soft mask, as seen by the further boost of 1.4
points in mIoU and 1.2 points in FID. Our final method that

1When re-weighting, we use a constant scalar upweighting of 2.5 as
determined by hyperparameter sweeps in early experiments.



combines DDIM inversion, re-weighting, and hard Inside-
Outside Attention achieves the best performance in mIoU
and FID with scores of 67.6 and 39.0 respectively without
a degradation in CLIP score. In Figure 12 we also demon-
strate that our Inside-Outside Attention Mechanism is able
to provide stronger shape signal than “copy background.”
Specifically, “copy background” provides a weaker shape
cue because its signal is centered around how well the edit
blends with the copied background at each timestep, which
is harder to determine at early and noisy timesteps.

11. Success / Failure Cases
Success Cases In Figure 18 we show edits made by our
method for each prompt in the MS-COCO ShapePrompts
benchmark. We demonstrate that our method is able to han-
dle partially occluded masks and maintain relationships be-
tween the object and background, as seen in the case of the
“inflatable boat” where the edit maintains the position of the
man and dog on that boat. We demonstrate that our method
is able to add accessories while simultaneously respecting
the input shape, as seen by the “elephant wearing christmas
decorations” where an ear is converted to a santa hat. Fi-
nally, our method is seamlessly able to edit material (“lego
truck”, “boat made of candies”, “origami kite made of pa-
per”) and color (“truck with spray paint graffiti”, “bird with
iridescent feathers”, “holi festival elephant”).
Failure Cases We also show failure cases of our method
in Figure 19. Sometimes the shape is inherently difficult,
such as the case with (a) uncommon pose (i.e., our method
repositions an elephant sitting on its hind legs to standing),
(b) uncommon perspective (i.e., our method transforms a
close-up of a dog’s eyes to a dog’s entire face and converts
its hair into fabric to obey the “floral jacket” in the prompt),
or (c) multi-part mask inputs (i.e., our method only edits the
front half of the truck into a lego material). Since we use
DDIM inversion (d) ghosting can occur where remnants of
the original object (e.g. a mouth or ear) can appear in the
synthesized object. Since we localize the attention maps (e)
global context can be ignored (i.e., our method edits a col-
orful dog into a black-and-white photo or creates artifacts
at the boundary between a dog’s legs and water). Finally,
our method may produce strange (f) accessory placement
(i.e., our method places a bowtie on the cat’s arm because
its neck is not visible in the original image).

12. Additional Editing Results
Inferred Shape Edits We show additional examples of ed-
its made by our method with an inferred shape as input
in Figure 17. Our method is able to handle a wide array
of inferred shapes including those with multiple instances,
noise, and occlusions.
Inter-Class Edits We show additional examples of inter-

class edits in Figure 20, including converting from cat to
dog, dog to cat, or sheep to cow.
Outside Edits. We show additional examples of outside ed-
its in Figure 21, including transforming the background to
different locations, seasons, or times of day.
Spurious Attentions and Classifier-Free Guidance In the
main text we discuss how our Inside-Outside Attention
mechanism is able to better perform reconstruction and edit-
ing with classifier-free guidance by removing spurious at-
tentions. We additionally show our method vs. P2P [8] in
the same setting in Figure 22. P2P exhibits spurious atten-
tions where the token “dog” not only attends to the dog but
also the background, causing the shape of the original dog
to diverge completely.



Image P2P NTI + P2P Plug-And-Play InstructPix2Pix Ours

“dog” ! “dog wearing a floral jacket”

“horse” !“futuristic biomechanical robotic horse with synthetic body parts showing”

“cat” ! “cat wearing a yellow and black tie”

“dog wearing a colorful shirt”

“cat” ! “spotted leopard cat”

Figure 16. Qualitative examples comparing our method with concurrent work for structure preserving editing. We compare against
P2P [8], NTI + P2P [19], Plug-and-Play [35], and InstructPix2Pix [2]. Here, we use the variant of our method that uses inferred shape,
which requires the same amount of input (real image and text prompts) as the structure preserving methods.



Image Inferred Shape Ours Image Inferred Shape Ours

“boat” ! “inflatable boat” “dog”! “dog wearing a colorful shirt”

“bear” ! “bear wearing sunglasses” “kite”! “origami kite made of paper”

“truck” ! “truck with spray paint graffiti” “bear”! “stuffed bear”

“horse” ! “futuristic biomechanical robot

horse with synthetic body parts showing”
“dog”! “dog wearing a floral jacket”

“bird”! “bird with iridescent feathers”

horse with synthetic body parts showing”
‘sandwich”! “tortilla wrapped sandwich”

Figure 17. Additional examples generated by our method with masks automatically inferred from the text (predicted by MaskFormer [4]).
Depending on the inferred shape, our method is able to edit multiple instances and handle complex shapes caused by noisy mask predictions
or severe occlusions.



Figure 18. Examples of success cases from our method that demonstrate its ability to handle partially occluded masks, add accessories,
transform materials, or recolor objects.



Figure 19. Examples of failure cases from our method that relate to (a) uncommon pose, (b) uncommon perspective, (c) multi-part mask,
(d) ghosting, (e) global context, (f) accessory placement.



Figure 20. Additional examples of inter-class edits.

Figure 21. Additional examples of outside edits from our method where we transform the background to various locations (New York City,
London), seasons (winter, autumn), and times of day (sunset, night) for various objects (truck, boat, cat).



Figure 22. Spurious attentions and classifier-free guidance also affects P2P [8]. We compare our method (top) and P2P (bottom) for
reconstructing (left) and editing (right) an image with corresponding cross attention maps for the token “dog” averaged over all layers and
timesteps.


