
CrashCar101: Procedural Generation for Damage Assessment - Supplementary
Materials

Jens Parslov∗,1 Erik Riise∗,1 Dim P. Papadopoulos1,2
1 Technical University of Denmark 2 Pioneer Center for AI

jens@parslov.com, erikriise@live.no, dimp@dtu.dk

https://crashcar.compute.dtu.dk

The purpose of the supplementary material is to pro-
vide additional information about the creation of the Crash-
Car101 dataset. We further show more qualitative results
for both part and damage segmentation tasks, more dataset
statistics as well as more example images and annotations.

1. Dataset statistics

To gain an improved overview of CrashCar101, we pro-
vide some statistics about the CrashCar101 dataset. For
comparison, the same statistics are provided for the CarDD
dataset. In Fig. 1, we show the proportion of damaged pix-
els per image and the number of damage types per image.
We see that CrashCar101 generally has fewer damaged pix-
els than CarDD. The number of damages per image shows
that the majority of images in CarDD (about 65%) have only
one damage. Meanwhile, the images in CrashCar101 have
on average more damage types.

Fig. 2 shows the spatial distribution of the damage loca-
tions for CrashCar101 and CarDD. We show the distribu-
tion of all damages combined as well as the distribution of
each damage type. We observe that the spatial distributions
of each damage type have some natural bias. For exam-
ple, glass shatter appears more at the top part of the images
because it can only appear on windows, while cracks are
not as smooth as the other damage types. We also observe
that CrashCar101 has more centered damage compared to
CarDD.

2. Part annotation

In Fig. 3, we display 36 examples of 3D car models from
ShapeNetCore which we annotated. The 99 cars featured in
CrashCar101 are annotated with 27 fine-grained semantic
parts. As described in the main paper, the cars were labeled
using a human-in-the-loop interactive approach.

∗Denotes equal contribution

fr
eq

ue
nc

y

fr
eq

ue
nc

y

fr
eq

ue
nc

y

fr
eq

ue
nc

y

CarDD

CarDD CrashCar101

CrashCar101
Proportion of damaged pixels Proportion of damaged pixels

of damages per image # of damages per image

Figure 1. Dataset Statistics. (Top row) The proportion of dam-
aged pixels per image. (Bottom row) The number of damage types
per image. Both rows show statistics for CarDD and CrashCar101.

3. Part segmentation results
Fig. 4 shows an overview of predictions from a model

trained on Pascal-Part, and a DeepLabv3 model trained on
our CrashCar101 along with Pascal-Part. Both models use a
ResNet50 backbone and were trained without data augmen-
tations. The models trained on CrashCar101 yield better re-
sults when testing on either the test data of UDA-PART or
Pascal-Part. We observe that the addition of CrashCar101
makes a more precise prediction for mirror part classes.

4. Dent generation details
In Fig. 5 we show the full Geometry Node setup in

Blender. The dent map (Fig. 7) outputs a vector field, which
is passed to Perturb Mesh which is used to dent the input
geometry. The adasub (Fig. 6) node adaptive subdivides the
mesh, whilst keeping the original shape. Annotation Ma-
terial applies a duplicate car paint material to the patch of

1

AllDents Scratches

Cracks Broken LampShatter

C
ra

sh
C

ar
10

1
C

ra
sh

C
ar

10
1

C
ar

D
D

C
ar

D
D

Figure 2. Damage Locations. Shows heat maps for image lo-
cations of each damage in CrashCar101 and CarDD. Notice that
CrashCar101 is more dense in the the center of the image.

the car that has been dented. This annotation material has a
unique material ID, which can be subsequently used for 2D
annotations. If subdivision is needed, it ensures that only
the parts that are inflicted with dents will be subdivided.
The dent map is implemented as described in the paper.

5. Blender Shader Nodes

In Fig. 9-13 we show complete implementations of
blender shader nodes for scratches, cracks, shatters, and
broken lights respectively. The formulas used to produce
the damages are explained in the paper.

6. Examples from CrashCar101

The last five pages of the supplementary material are
dedicated showing a random selection of various examples
from the CrashCar101 dataset. The images show that our
synthetic dataset is diverse in viewpoint, car color, back-
ground/lighting, and damage appearance, shape, and size.
Due to the procedural generation method used in the dataset
creation, certain examples can pose a challenge, particu-
larly when defects are situated in shaded areas of the car.
Conversely, real data is often obtained under human super-

vision, ensuring easier visibility of damages, however may
also contain bias.

Figure 3. Examples of 3D models. We show examples of the models from ShapeNetCore along with the part annotations.

UDAPART (11) Pascal-Part (11)

Im
ag

e
G

T
Pa

sc
al

-P
ar

t [
9]

C
ra

sh
C

ar
10

0K
+[

9]

UDAPART (11) Pascal-Part (11)
Im

ag
e

G
T

Pa
sc

al
-P

ar
t [

9]
C

ra
sh

C
ar

10
0K

+[
9]

UDAPART (11) Pascal-Part (11)

Im
ag

e
G

T
Pa

sc
al

-P
ar

t [
9]

C
ra

sh
C

ar
10

0K
+[

9]

UDAPART (11) Pascal-Part (11)

Im
ag

e
G

T
Pa

sc
al

-P
ar

t [
9]

C
ra

sh
C

ar
10

0K
+[

9]
UDAPART (11) Pascal-Part (11)

Im
ag

e
G

T
Pa

sc
al

-P
ar

t [
9]

C
ra

sh
C

ar
10

0K
+[

9]

UDAPART (11) Pascal-Part (11)

Im
ag

e
G

T
Pa

sc
al

-P
ar

t [
9]

C
ra

sh
C

ar
10

0K
+[

9]

UDAPART (11) Pascal-Part (11)

Im
ag

e
G

T
Pa

sc
al

-P
ar

t [
9]

C
ra

sh
C

ar
10

0K
+[

9]

UDAPART (11) Pascal-Part (11)

Im
ag

e
G

T
Pa

sc
al

-P
ar

t [
9]

C
ra

sh
C

ar
10

0K
+[

9]

Figure 4. Qualitative part segmentation results. We show results from training our part segmentation model on Pascal-Part and on
CrashCar101+Pascal-Part. We observe that by including our synthetic data to the real training set, we obtain a model that yields better
results.

Figure 5. Geometry Nodes for Dent Generation. We show the complete implementation of the dent generator.

Figure 6. Adaptive Subdivision. We show the complete implementation adaptive subdivision.

Figure 7. Dent Map. This nodetree outputs a vector field used to perturb the input mesh.

Figure 8. Damage Texture. Shows our implementation of scratches and cracks. Cracks drive the alpha value of car paint shader, whilst
scratches drives the mix shader node.

Figure 9. Scratches. The output of scratches is a binary map. Patch is used to generate the final segmentation mask annotation.

Figure 10. Cracks. Shows our implementation of cracks as described in the paper.

Figure 11. Shatter Window Shader. This nodetree implements the shatter glass defect as described in the paper.

Figure 12. Light broken parent shader. This nodetree implements the broken light defect as described in the paper.

Figure 13. Light broken parent shader. This nodetree implements the broken light defect as described in the paper.

Im
ag
e

D
am
ag
e

Pa
rt
s

Im
ag
e

D
am
ag
e

Pa
rt
s

Im
ag
e

D
am
ag
e

Pa
rt
s

Im
ag
e

D
am
ag
e

Pa
rt
s

Im
ag
e

D
am
ag
e

Pa
rt
s

Im
ag
e

D
am
ag
e

Pa
rt
s

Im
ag

e
G

T
C

ra
sh

C
ar

10
1+

[6
3]

Im

ag
e

G
T

C
ra

sh
C

ar
10

1+
[6

3]

Im
ag

e
G

T
C

ra
sh

C
ar

10
1+

[6
3]

Im

ag
e

G
T

C
ra

sh
C

ar
10

1+
[6

3]

