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A. Overview of Appendices

Our appendices contain the following additional details
and results:

• Tables 1, 2, 3, 4, and 5 in Section B include additional
metrics, RMSE and the Pearson correlation coefficient,
for experimental results included in the main paper.
We also provide Scatter and Bland-Altman Plots in
Figures 1 and 2 that correspond to the overall results
shown in Table 3. Section B.1 contains additional de-
tails regarding our experimental process. Section B.2
contains an additional experiment toward the effect of
scaling a dataset using motion augmentation.

• Section C, and the corresponding Table 6, describe and
show intra-dataset results using the PURE [15] dataset.

• Section D briefly describes additional materials that
we provide for research purposes, including our mo-
tion augmentation pipeline code, pre-trained models,
and motion analysis scripts. Additionally, Section D.1
shows more qualitative examples of the effects of mo-
tion augmentation on the underlying PPG signal, as
well as briefly addresses prior works involving anal-
ysis of physiological signals in deep fake videos.

• Sections E.1, E.2, and E.3, provide further details on
source, driving, and evaluation datasets used in the
main paper.

• Section F is our broader impact statement.

B. Experimental Results

The following section contains tables that include addi-
tional metrics, RMSE and the Pearson correlation coeffi-
cient, for experimental results already included in the main
paper. We also provide scatter and Bland-Altman plots in
Figures 1 and 2 that correspond to results shown in Table 3.

Table 1. Effect of Motion Types – Non-rigid. We augment
UBFC-rPPG with various types of non-rigid motions (expressions)
and test on the speech task, in PURE [15]. The best results are
shown in bold.

Testing Set
Non-rigid Motion Task

Training Set Non-Rigid Motion MAE↓ RMSE↓ MAPE↓ ρ ↑

UBFC-rPPG Very Small 10.84 24.64 11.40 0.46
MAUBFC-rPPG Small 1.86 2.79 2.94 0.99
MAUBFC-rPPG Large 1.17 1.90 1.55 0.99

OURS VS. BASELINE +89.21% +92.29% +86.40% +0.00%

MAE = Mean Absolute Error in HR estimation (Beats/Min), RMSE =
Root Mean Square Error in HR estimation (Beats/Min), MAPE = Mean
Absolute Percentage Error in HR estimation, ρ = Pearson Correlation in

HR estimation

B.1. Experimental Details

The predicted PPG signals were filtered using a band-
pass filter with cut-offs 0.75 Hz and 2.5 Hz. The heart rate
was calculated based on the predicted PPG signal using the
Fast Fourier Transform (FFT), with a measurement window
of the video length for UBFC-rPPG, PURE, UBFC-PHYS,
and MMPD. To evaluate the AFRL dataset, a measurement
window of 30 seconds was utilized for heart rate calcula-
tions. All networks were trained using an NVIDIA RTX
A4500 and PyTorch [14] implementations in the publicly
available rPPG-Toolbox [8]. All pre-processing steps and
evaluation was also done in a reproducible fashion using
the toolbox. The AdamW [9] optimizer, a mean squared
error (MSE) loss, and a cyclic learning rate scheduler was
utilized with 30 epochs, a learning rate of 0.009, and a batch
size of 4 for both training and inference.

For both the UBFC-rPPG dataset and PURE datasets, all
subjects were augmented with motion. For our experiments,
we elect to use all of the subjects in our training and train
to the very last epoch. A variety of appropriately titled pre-
trained models corresponding to results in the main paper
and the appendices are included alongside our code in the
pretrained models folder.
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Table 2. Effect of Motion Types – Rigid. We augment UBFC-rPPG with various types of rigid head motions and test on AFRL [5]. The
best results are shown in bold.

Testing Set
No Motion Small Motion Large Motion All

Training Set Rigid Motion MAE↓ RMSE↓ MAPE↓ ρ ↑ MAE↓ RMSE↓ MAPE↓ ρ ↑ MAE↓ RMSE↓ MAPE↓ ρ ↑ MAE↓ RMSE↓ MAPE↓ ρ ↑

UBFC-rPPG Very Small 1.00 3.86 1.48 0.95 2.28 6.36 3.44 0.85 7.59 12.91 10.99 0.49 4.72 10.01 6.59 0.67
MAUBFC-rPPG Small 0.84 3.25 1.18 0.96 1.44 4.44 2.03 0.93 4.21 9.11 5.96 0.74 3.19 7.96 4.36 0.79
MAUBFC-rPPG Large 1.00 3.61 1.37 0.96 1.78 5.23 2.49 0.90 3.64 8.14 5.12 0.78 3.39 8.26 4.58 0.77

OURS VS. BASELINE +16.00% +15.80% +20.27% +1.05% +36.84% +30.19% +40.99% +9.41% +52.04% +36.95% +53.41% +59.18% +32.42% +20.48% +33.84% +17.91%

MAE = Mean Absolute Error in HR estimation (Beats/Min), RMSE = Root Mean Square Error in HR estimation (Beats/Min), MAPE = Mean Absolute
Percentage Error in HR estimation, ρ = Pearson Correlation in HR estimation

Table 3. Evaluation across all datasets. We motion-augment two training datasets, UBFC-rPPG and PURE, to create MAUBFC-rPPG
and MAPURE, respectively. We observe that the motion-augmented versions produce significant improvements (shown in bold).

Testing Set
UBFC-rPPG PURE UBFC-PHYS AFRL MMPD

Training Set Method MAE↓ RMSE↓ MAPE↓ ρ ↑ MAE↓ RMSE↓ MAPE↓ ρ ↑ MAE↓ RMSE↓ MAPE↓ ρ ↑ MAE↓ RMSE↓ MAPE↓ ρ ↑ MAE↓ RMSE↓ MAPE↓ ρ ↑

Unsupervised

Green 19.82 31.49 18.78 0.37 10.09 23.85 10.28 0.34 13.45 19.11 16.00 0.31 7.01 12.52 9.24 0.52 16.27 21.74 20.09 -0.04
ICA 14.70 23.71 14.34 0.53 4.77 16.70 4.47 0.72 8.00 13.51 9.48 0.48 6.77 12.25 8.96 0.51 13.10 17.84 16.33 0.03
CHROM 3.98 8.72 3.78 0.89 5.77 14.93 11.52 0.81 4.68 8.09 6.20 0.77 5.41 10.71 7.95 0.60 8.85 12.77 11.93 0.29
POS 4.00 7.58 3.86 0.92 3.67 11.82 7.25 0.88 4.62 8.02 6.29 0.78 6.93 11.89 10.00 0.49 8.18 13.04 11.12 0.31

UBFC-rPPG TS-CAN - - - - 4.55 14.47 4.67 0.80 5.56 9.88 7.25 0.68 4.24 8.72 5.84 0.75 8.74 15.55 10.51 0.25
MAUBFC-rPPG TS-CAN - - - - 0.96 4.17 1.13 0.97 3.93 7.50 5.24 0.81 2.67 6.55 3.65 0.85 6.80 14.20 7.97 0.29
PURE TS-CAN 1.34 3.01 1.55 0.99 - - - - 4.43 8.12 5.89 0.78 2.63 7.35 3.51 0.82 8.96 16.59 10.33 0.15
MAPURE TS-CAN 1.03 2.70 1.17 0.99 - - - - 4.39 8.10 5.90 0.78 2.37 6.28 3.26 0.87 8.08 15.38 9.54 0.18

MAUBFC-RPPG VS. UBFC-RPPG - - - - +78.9% +71.18% +75.8% +21.25% +29.32% +24.09% +27.72% +19.12% +37.03% +24.89% +37.50% +13.33% +22.20% +8.68% +24.17% +16.00%

MAPURE VS. PURE +23.13% +10.30% +24.52% +0.00% - - - - +0.90% +0.25% -0.17% +0.00% +9.89% +14.56% +7.12% +6.10% +9.82% +7.29% +7.65% +20.00%

MAE = Mean Absolute Error in HR estimation (Beats/Min), RMSE = Root Mean Square Error in HR estimation (Beats/Min), MAPE = Mean Absolute
Percentage Error in HR estimation, ρ = Pearson Correlation in HR estimation

Table 4. Naturalistic vs Synthetic Head Motion. We compare the effect of adding head motions to SCAMPS and UBFC-rPPG and
contrast this with using motion data in SCAMPS. Average time for augmenting each frame of a sequence is presented. The best results are
shown in bold.

Testing Set
PURE AFRL Per Frame

Training Set MAE↓ RMSE↓ MAPE↓ ρ ↑ MAE↓ RMSE↓ MAPE↓ ρ ↑ Synthesis Time

SCAMPS-200 (No motion) 10.29 23.81 11.09 0.35 7.75 13.08 10.54 0.48 37s
SCAMPS-200 (Motion) 5.38 16.98 5.42 0.72 7.25 12.85 10.20 0.48 37s
Wang et al. [18] 7.40 22.45 6.13 0.44 - - - - N/A
UBFC-rPPG 4.55 14.47 4.67 0.80 4.72 10.01 6.59 0.67 -
MASCAMPS-200 4.67 16.35 4.22 0.75 5.00 10.10 6.69 0.67 1.20s
MAUBFC-rPPG 0.96 4.17 1.13 0.97 3.24 7.89 4.37 0.79 2.39s

MASCAMPS VS. SCAMPS BASELINE +13.20% +3.71% +22.14% +4.17% +31.03% +21.40% +34.41% +39.58% +96.76%

MAUBFC VS. UBFC-RPPG BASELINE +78.9% +71.18% +75.8% +21.25% +31.36% +21.18% +33.69% +17.91% -

MAE = Mean Absolute Error in HR estimation (Beats/Min), RMSE = Root Mean Square Error in HR estimation (Beats/Min), MAPE = Mean Absolute
Percentage Error in HR estimation, ρ = Pearson Correlation in HR estimation, Synthesis Time = the amount of time (in seconds) it takes to synthesize a

single frame, when relevant

Table 5. Effect of rPPG Estimation Models. We train different PPG estimation networks on UBFC-rPPG and MAUBFC-rPPG and
evaluate on PURE. The best results are shown in bold.

Testing Set
PURE

Training Set Method MAE↓ RMSE↓ MAPE↓ ρ ↑

UBFC-rPPG DeepPhys 5.14 17.20 4.90 0.72
MAUBFC-rPPG DeepPhys 1.24 6.01 1.56 0.97
UBFC-rPPG PhysNet 8.06 19.71 13.67 0.61
MAUBFC-rPPG PhysNet 2.38 11.29 2.44 0.88
UBFC-rPPG TS-CAN 4.55 14.47 4.67 0.80
MAUBFC-rPPG TS-CAN 0.96 4.17 1.13 0.97

MAE = Mean Absolute Error in HR estimation (Beats/Min), RMSE = Root Mean Square Error in HR estimation (Beats/Min), MAPE = Mean Absolute
Percentage Error in HR estimation, ρ = Pearson Correlation in HR estimation



Test Dataset

Figure 1. Scatter and Bland-Altman Plots. Scatter (top row) and Bland-Altman (bottom row) plots for models trained on UBFC-rPPG
(black) and MAUBFC-rPPG (red) and tested on (from left to right), PURE, UBFC-PHYS, AFRL, and MMPD.

Test Dataset

Figure 2. Scatter and Bland-Altman Plots. Scatter (top row) and Bland-Altman (bottom row) plots for models trained on PURE (black)
and MAPURE (red) and tested on (from left to right), UBFC-rPPG, UBFC-PHYS, AFRL, and MMPD.



For Table 4, we consider 200 samples from the SCAMPS
dataset that consist of significant synthetically generated
rigid and non-rigid head motion (ID 1801 to 2000) as
SCAMPS-200 (Motion). We then take instances from the
SCAMPS dataset with no head motion (ID 1 to 200) and
augment them with naturalistic head motion using our mo-
tion synthesis pipeline and a subset of driving videos from
the TalkingHead-1KH dataset to produce MASCAMPS-
200. We choose driving videos with a range of mean stan-
dard deviation in AUs from 0.35 to 0.40 intensity and a
range of mean standard deviation in head pose rotations
from 0.05 to 0.125 rad. Note that both SCAMPS-200 (Mo-
tion) and MASCAMPS-200 consist of synthetics with the
same number of identities, with the only difference being
synthetic and naturalistic head motion, respectively.

B.2. Effect of Multiple Augmentations

We consider whether it is plausible to augment the same
source video with multiple driving videos using neural mo-
tion transfer. Thus, the newly augmented dataset has the
same number of identities as the original dataset but a sig-
nificantly larger variation in motions. Our goal is to analyze
how many times one can augment a single source video be-
fore the performance starts to saturate or drop.

We consider UBFC-rPPG as training data that we aug-
ment with randomly sampled driving videos from the
TalkingHead-1K dataset to produce MAUBFC-rPPG. We
augment the same source video from 1 to 4 times with dif-
ferent driving videos and evaluate on the PURE [15] dataset
and the UBFC-PHYS [13] dataset and report the results in
Table 7. We notice that the results saturate pretty quickly
and can start to decline after augmenting more than 2 times.
This is presumably due to the fact that we were not aug-
menting other aspects of the subjects’ appearance (e.g., skin
tone, identity, etc.).

C. Intra-dataset Results

We include intra-dataset results not included in the main
paper here for reference. We utilize all of the tasks from the
PURE dataset. We train on subjects 1, 2, 3, 4, and 5 and then
test on subjects 6, 7, 8, 9, and 10. We then train on subjects
6, 7, 8, 9, and 10 and then test on subjects 1, 2, 3, 4, and 5.
We average the results from these two experiments and re-
peat the aforementioned process for the motion-augmented
version of PURE. We find that motion augmentation helps
as an intra-dataset augmentation technique.

Table 6. PURE Intra-dataset Results. We use motion augmenta-
tion to augment half of the subjects in the PURE dataset at a time,
while testing on the corresponding other half. The averaged results
are shown below, with the best result in each column bolded.

Testing Set
PURE

Training Set MAE↓ RMSE↓ MAPE↓ ρ ↑

PURE 2.52 8.92 2.55 0.92
MAPURE 1.61 5.50 1.77 0.97

OURS VS. BASELINE +36.1% +38.34% +30.59% +5.43%
MAE = Mean Absolute Error in HR estimation (Beats/Min), RMSE =

Root Mean Square Error in HR estimation (Beats/Min), MAPE = Mean
Absolute Percentage Error in HR estimation, ρ = Pearson Correlation in

HR estimation

Table 7. Effect of Multiple Augmentations. Augmenting each
source video of UBFC-rPPG 1x, 2x, 3x, and 4x, we test on PURE
and UBFC-PHYS datasets. The best results are shown in bold.

Testing Set
PURE UBFC-PHYS

Training Set Size Subjects MAE↓ MAPE↓ MAE↓ MAPE↓

UBFC-rPPG 42 42 4.55 4.67 5.56 7.25
MAUBFC-rPPG 42 42 0.96 1.13 3.93 5.24
MAUBFC-rPPG 2x 84 42 0.94 1.10 3.90 5.22
MAUBFC-rPPG 3x 126 42 0.92 1.09 3.97 5.31
MAUBFC-rPPG 4x 168 42 1.02 1.25 4.10 5.40

OURS VS. BASELINE +2.63% +2.31% +0.76% +0.38%

D. Motion Augmented rPPG Videos
We provide code for augmenting various camera phys-

iology datasets and pre-trained models trained on motion-
augmented data. Additionally, we provide various files to
easily train on baselines and motion augmented data using
the publicly available rPPG-Toolbox [8]. Pre-trained mod-
els using the baseline UBFC-rPPG or PURE datasets can
be found in the rPPG-Toolbox. We also include motion
analysis scripts that utilize OpenFace [1] to analyze both
rigid and non-rigid motion in videos and generate plots. All
of these additional materials be found through our project
page: https://motion-matters.github.io/.

D.1. The Effect of Motion Transfer on PPG

In Figure 3, we provide additional qualitative examples
of the effect of motion transfer on the underlying PPG sig-
nal in rPPG videos. All examples include a plot of the
gold-standard PPG signal, the predicted PPG signal from
the unaugmented source rPPG video by a TS-CAN model,
and the predicted PPG signal from the motion-augmented
source rPPG video by a TS-CAN model. The TS-CAN
models utilized are trained on a larger superset of the shown
examples (e.g., UBFC, MAUBFC) with the same experi-
mental settings mentioned in Section B.1. As shown by
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Figure 3. Signal Prediction on UBFC-rPPG and MAUBFC-rPPG. We provide three, subject-wise examples of signal prediction using
a neural method, TS-CAN, on unaugmented and motion-augmented videos from the UBFC-rPPG dataset.

these qualitative examples, a neural method such as TS-
CAN is capable of recovering the underlying PPG signal
despite the application of motion augmentation.

Our observation that the underlying physiological sig-
nal is reasonably preserved after motion augmentation and,
therefore, useful as training data may seem contradictory to
prior works (e.g., [3]) that analyze the loss of physiolog-
ical information as a means to identify deep fake videos.
The methods utilized in such prior works typically animate
a single frame or swap faces, which we would respectively
expect to not have and not preserve a useful rPPG signal.
When a method that does animate a whole video without de-
stroying the video subject identity is mentioned, the source
videos in question can be highly compressed videos rather
than raw, uncompressed videos from rPPG datasets that we
used and are expected to have a useful rPPG signal to be-
gin with. It is well-known that various degrees of compres-
sion in videos can severely degrade the underlying rPPG
signal [12].

E. Datasets
E.1. Source Videos for Motion Synthesis

We use the following state-of-the-art datasets for source
videos used in our motion synthesis pipeline:

UBFC-rPPG [2]: The UBFC-rPPG video dataset con-
tains 42 RGB videos, one per subject, at 30 Hz. The videos
were collected with a Logitech C920 HD Pro with a resolu-
tion of 640x480 and a CMS50E transmissive pulse oxime-
ter was utilized in order to record gold-standard PPG sig-
nals. The UBFC-rPPG dataset contains minimal motion,
with subjects being asked to simply sit one meter away from
the camera in an environment with both artificial and natu-
ral lighting. When utilized as source videos, we utilized
all videos from the UBFC-rPPG dataset. When utilized for
evaluation, we also utilized all videos from the UBFC-rPPG
dataset.

PURE [15]: The PURE dataset contains 59 videos, each
corresponding to a unique task, per a subject. The six tasks
involve staying steady, talking, slow head translation, fast

Table 8. A Summary of the rPPG Benchmark Datasets.

UBFC

PURE

UBFC-Phys

MMPD

AFRL

UBFC

PURE

UBFC-Phys

MMPD

AFRL
Dataset Subjects / Videos Motion Tasks

UBFC-rPPG 42 / 42 Stationary
PURE 10 / 59 Stationary, Talking, Rotation, Translation
UBFC-Phys 56 / 168 Stationary, Talking, Head Rotation
MMPD 33 / 660 Stationary, Talking, Walking, Head Rotation
AFRL 25 / 300 Stationary, Head Rotation

head translation, small head rotation, and medium head ro-
tation. There are 10 subjects total with subject 6’s talk-
ing task video being excluded. All of the videos were
captured with an RGB eco274CVGE camera (SVS-Vistek
GmbH) at a resolution of 640x480 and 60 Hz. During all
tasks, the subject was asked to be seated in front of the
camera at an average distance of 1.1 meters and lit from
the front with ambient natural light through a window. A
gold-standard measure of PPG was collected with a pulse
oximeter, CMS50E, attached to the finger. When utilized
as source videos, we utilized all videos from the PURE
dataset. When utilized for evaluation, we also utilized all
videos from the PURE dataset.

SCAMPS [11]: The SCAMPS dataset contains 2,800
synthetic videos that were generated using a blendshape-
based rig with 7,667 vertices and 7,414 polygons, with



distinct identities being learned from a set of high-quality
facial scans. Blood flow, and subsequently the underly-
ing physiological signals, are simulated using the modifica-
tion of physically-based shading materials. The SCAMPS
dataset contains a variety of rigid and non-rigid head mo-
tions, with varying intensities. The dataset also contains a
variety of lighting conditions and background conditions.
Each SCAMPS video is 20 seconds in length, with 600
frames at a sampling rate of 30 Hz. We only utilize portions
of the SCAMPS dataset as source videos in our ablation
study regarding synthetic versus naturalistic head motion.

E.2. Driving Videos for Motion Synthesis

We use the following datasets for driving videos used in
our motion synthesis pipeline:

TalkingHead-1KH [17]: The TalkingHead-1KH dataset
is a publicly available, large-scale talking-head video
dataset used as a benchmark for Face-Vid2Vid [17] and en-
tirely sourced from YouTube videos. It contains 180K un-
constrained videos of people speaking in a variety of real-
world contexts, leading to a rich diversity in both rigid and
non-rigid motion. The videos are of varied resolutions, but
there is an emphasis on collecting high quality, high res-
olution videos which compose a significant portion of the
dataset (with a resolution of at least 512x512). We elect to
filter the dataset for head pose such that any videos where
the head pose, on average, is outside +/- 20 degrees are re-
moved. This prevents damaging motion augmentation arti-
facts due to impractical differences in the head pose in the
source video and the head pose in the driving videos, but
comes at the cost of reduced head pose variations. We also
filter by facial action units (AUs) (0 to 5, in units of inten-
sity) such that any videos below a mean standard deviation
in facial AUs of 0.15 is filtered out. This prevents driving
videos that are not suitable for our application from being
used - for example, a driving video that is effectively a slide
show and doesn’t have any naturalistic motion upon quali-
tative inspection.

CDVS: The CDVS contains 90 self-captured videos by
5 subjects with heavily constrained, unnatural motion used
only for ablation studies to understand the impact of aug-
menting data with various degrees of rigid and non-rigid
motion. Subjects self-capture the videos in a variety of set-
tings with artificial lighting of the face in an indoors setting.
When capturing a video to show one of the two types of mo-
tion we study, subjects are asked to constrain the other mo-
tion type as much as possible. The CDVS will be released
in the future for research purposes.

E.3. Additional Datasets for Evaluation

In addition to using UBFC-rPPG [2] and PURE [15] as
both source video datasets in the motion synthesis pipeline
and datasets for evaluation, we use three additional state-of-

the-art datasets for evaluation:
UBFC-PHYS [13]: The UBFC-PHYS dataset is a mul-

timodal dataset with 168 RGB videos, with 56 subjects
(46 women and 10 men) per a task. There are three tasks
with significant amounts of both rigid and non-rigid mo-
tion - a rest task, a speech task, and an arithmetic task.
Gold-standard BVP and electrodermal activity (EDA) mea-
surements were collected via the Empatica E4 wristband.
The videos were recorded at a resolution of 1024x1024 and
35Hz with a EO-23121C RGB digital camera. We utilized
all of the tasks and the same subject sub-selection list pro-
vided by the authors of the dataset in the second supple-
mentary material of Sabour et al. [13] for evaluation. This
means we eliminated 14 subjects (s3, s8, s9, s26, s28, s30,
s31, s32, s33, s40, s52, s53, s54, s56) for the rest task, 30
subjects (s1, s4, s6, s8, s9, s11, s12, s13, s14, s19, s21, s22,
s25, s26, s27, s28, s31, s32, s33, s35, s38, s39, s41, s42,
s45, s47, s48, s52, s53, s55) for the speech task, and 23
subjects (s5, s8, s9, s10, s13, s14, s17, s22, s25, s26, s28,
s30, s32, s33, s35, s37, s40, s47, s48, s49, s50, s52, s53) for
the arithmetic task.

AFRL [5]: The AFRL dataset contains 300 videos of 25
participants (17 males, 8 females) recorded at 658x492 res-
olution and 120 FPS. Gold-standard physiological signals
were measured using the fingertip reflectance PPG method.
Participants were asked to perform a series of tasks, result-
ing in 12 tasks total. With a black background behind the
participant, the tasks entailed sitting still with a chin-rest,
sitting still without a chin rest, rotating the head with an
angular velocity of 10 degrees/second, 20 degrees/second,
and 30 degrees/second, and finally randomly orienting their
head once per a second to a predefined location. This re-
sulted in six recordings, which were repeated once with a
colorful background, resulting in 12 videos per a partici-
pant. As a part of our pre-processing steps for AFRL, we
down-sampled the videos to 30 FPS. We utilized all of the
videos for evaluation.

MMPD [16]: The Multi-domain Mobile Video Physiol-
ogy Dataset (MMPD) dataset contains 11 hours of record-
ings from mobile phones of 33 subjects. Gold-standard PPG
signals were simultaneously recorded using an HKG-07C+
oximeter. The dataset was designed to capture variations in
skin tone, body motion, and lighting conditions in videos
useful for the rPPG task. Videos were collected under three
artificial light sources: i) low LED light (100 lumens on the
face region), ii) mid-level incandescent light (200 lumens
on the face region), and iii) high LED light (300 lumens
on the face region). Videos were also collected under nat-
ural light, which varied from 300-800 lumens intensity on
the face region. Videos were recorded following an experi-
mental procedure in which participants performed a variety
of tasks in different lighting conditions - a stationary task,
a head rotation task, a talking task, and a walking task. We



evaluated on videos with artificial lighting, Fitzpatrick scale
skin tone type 3, and any of the four tasks (stationary, head
rotation, talking, and walking) that correspond to varying
degrees of rigid and non-rigid motion.

F. Broader Impact Statement
While generating synthetic videos that are indistinguish-

able from those of real people has concerning use cases,
there are positive applications of this technology can en-
abled. In the medical domain simulators are increasingly
being tested within specific applications [6, 7]. It is impor-
tant that the limitations of generative models are understood
as these may impact the performance of the resulting mod-
els trained using simulated data. It is possible for generative
approaches to compound harmful biases [10] and motion
augmentation algorithms can be used for troubling negative
applications. To mitigate negative outcomes, we license our
source code using responsible behavioral use licenses used
across a large number of publicly released machine learned
models [4].
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