
NVAutoNet: Fast and Accurate 360◦ 3D Visual Perception For Self Driving
Supplementary Material

Trung Pham, Mehran Maghoumi, Wanli Jiang, Bala Siva Sashank Jujjavarapu, Mehdi Sajjadi,
Xin Liu, Hsuan-Chu Lin, Bor-Jeng Chen, Giang Truong, Chao Fang, Junghyun Kwon, Minwoo Park

NVIDIA

1. Perception Tasks

1.1. 3D Object Detection

3D object detection is a key capability for autonomous
driving. The goal is to localize, classify and estimate dimen-
sions and orientations of objects in 3D space. Each object
is represented by its category and 3D cuboid. In particular,
each 3D cuboid has 9 degree-of-freedom (DOF) represent-
ing position, dimension, and orientation. In this work, we
adopt a set prediction approach to remove the need for a
non-maximum suppression (NMS) post-processing.

The 3D object detection network includes five
lightweight heads (implemented by a couple of con-
volutional layers), which takes the bottleneck feature map
F̂bev as input and predicts object class distributions and 3D
cuboid parameters. Formally, let us denote C × M × N
be the dimension of F̂bev , where M × N is the spatial
dimension and C is the number of channels, the 3D
detection network will output K̂ = M × N objects —
one object per grid cell. The model employs one head
to predict the object classification scores, and three other
heads for 3D cuboid parameters (position, dimensions and
orientation) regression. There is an additional head for
predicting uncertainty of cuboid parameters.
Classification. For k number of objects, the network
outputs k + 1 classification channels, where the first chan-
nel represents object existence and the other k channels
represent a categorical distribution over k classes.
Position. The network predicts a tuple [r, a, e], where r is
radial distance, a is azimuth angle, and e is elevation. Note
that the network actually predicts radial and angular offset
values, which are then added to grid cell positions to form
final radial and angular positions.
Dimensions. The network predicts three scalars [dx, dy, dz]
which are absolute values in meters.
Orientation. We represent object orientation using a full
rotation matrix R ∈ R3×3 , as opposed to previous works
only estimating yaw angle. However, rotation matrix
prediction is nontrivial because not every 3 × 3 matrix
is a valid rotation matrix. Here we propose to train the

network to predict sine and cosine values of yaw (ψ),
pitch (θ), and roll (ϕ) angles respectively, which are later
used to construct a rotation matrix by applying matrix
multiplication of three axis rotation matrices together.

R = Rz(ψ)Ry(θ)Rx(ϕ), (1)

Rz =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 ,
Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ,
Rx(ϕ) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 .
(2)

Training Losses. For each scene, let G = {gi}Ki=1 be
a set of K ground-truth objects, and let P = {di}K̂i=1 be a
set of K̂ predicted objects. The training loss is computed
in a two-step fashion where in the first step, we found the
best one-to-one matching between G and P . In the second
step, we compute the final loss based on the matching result.
Although the idea sounds very simple, the training process
will be highly affected by the matching quality — if the
matching algorithm returns wrong or sub-optimal matches,
the network training won’t be successful.

To ensure high quality matches, we constructed a match-
ing cost function considering classification, position, di-
mension, and orientation costs between each candidate-
ground truth pair. In the early phase of training, how-
ever the network prediction is quite noisy, often leading to
bad assignments. This issue can be mitigated by setting a
higher weight for the position cost. Alternatively, inspired
by [1], we proposed to limit the matching candidates for
each ground truth object by its corresponding coverage on
the BEV grid. This will prohibit matching pairs in which the
ground truth object and the candidate are far apart. More-
over, the matching optimization problem is now simplified,

1

we adopt a greedy matching algorithm instead of the well-
known Hungarian algorithm without losing accuracy, but
more efficient.

Let Ppos be the set of positive object candidates matched
to the ground truth objects, and Pneg = P \ Ppos be a set
of negative objects, the training loss is as below:

Lobs(G,P) = Lpos
obs(G,Ppos) + Lneg

obs (Pneg)

=
∑

di∈Ppos

L(gi,di) +
∑

di∈Pneg

L(di), (3)

where L(gi,di), and L(di) are loss functions per each pre-
dicted candidate. If di is a negative candidate, the loss func-
tion L(di) is simply a (focal) binary cross entropy loss —
pulling its objectness score to zero. If di is a positive candi-
date, the loss function L(gi,di) composes of classification
and regression losses. While the classification loss is still a
(focal) cross-entropy loss, the regression loss is more com-
plex as explained below.

To regress 3D cuboid parameters, ideally we should
compute a global loss such as intersection-over-union (IoU)
score which considers all parameters together as there is
a strong correlation between cuboid parameters. However
there is no closed-form solution to compute IoU between
two 3D cuboids. Here, we propose to decompose the 3D
cuboid regression loss into position (location) loss, shape
(size) loss and orientation (rotation) loss, as below:

Lreg(gi,di) = Lloc(gi,di) +Lsize(gi,di) +Lrot(gi,di)
(4)

Lloc(gi,di) =
|gr

i − dr
i |

σr
+

|ga
i − da

i |
σa

+
|ge

i − de
i |

σe
+ log(2σr) + log(2σa) + log(2σe)

(5)

Lsize(gi,di) =
1

σs
(1−

∏
d∈{dx,dy,dz}

min(gd
i ,d

d
i)

max(gd
i ,d

d
i)
)+log(2σs)

(6)

Lrot(gi,di) =
1

σo

∑
r∈R

|gr
i − dr

i |+ log(2σo) (7)

where σr,σa, σe, σs, σo are uncertainty values for position,
shape and orientation respectively. These values are pre-
dicted by the network.

1.2. 3D Freespace

3D obstacle detection generally covers category-wise
classifiable vehicles and vulnerable road users (VRU). In
a driving scenario, there is a lot more information which is
relevant for safe driving beyond the predictions of 3D ob-
stacle detection. For example, there can be random hazard

obstacles like tyres, traffic cones lying on the road. Addi-
tionally, there are a lot of static obstacles like road-divider,
road-side curb, and guard rails which are not covered by
3D obstacle detection. An autonomous vehicle has to drive
safely within the boundaries of the road by avoiding all
kinds of obstacles. The region within the boundaries of the
road which is not occupied by any obstacle could be carved
out as a driveable region. The driveable region is used in-
terchangeably as the freespace region. The down-stream
behaviour planner would consume the freespace region in-
formation to plan a safe trajectory for the AV. So it is es-
sential to have a perception component which predicts this
freespace region. The freespace region is represented as a
radial distance map (RDM). The representation is explained
in more details in the next section.

Radial Distance Map. While polygons are used for la-
beling of 3D freespace, we use the RDM representation due
to its higher efficiency. RDM is composed of equiangu-
lar bins and radial distance values for each angular bin to
denote spatial locations. For autonomous driving applica-
tions, the distance to the closest freespace boundary is the
most important one and thus we use a single scalar for each
angular bin to represent the closest freespace boundary. In
order to create ground-truth RDM for 3D freespace, we sim-
ply shoot a ray from the center of BEV plane at each angular
bin direction and compute the intersection between the ray
and the ground-truth polygon. The most important benefit
of using RDM to represent 3D freespace is it can be directly
used to create 3D boundary points without additional post-
processing. In addition to the radial distance, we also have,
for each angular bin, boundary semantic labels such as ve-
hicle, VRU and others. Each freespace ground truth label
becomes (r, c), where r is a radial distance vector, and c is
a boundary semantic vector.

Model. The 3D freespace detection network consists of
a shared neck and two separate heads. The shared neck in-
cludes a couple of convolutional layers on top of the bottle-
neck feature map F̂bev . It is later extended into two heads
which predict radial distance and classification maps.

Training Losses. For each scene, let G = (r, c) be the
ground-truth, let P = (r̂, ĉ) be the prediction. The overall
loss function for the 3D freespace detection task is defined
as:

Lfsp(G,P) = Lreg
fsp(r̂, r) + Lcls

fsp(ĉ, c) (8)

Lreg
fsp(r̂, r) = Liou

fsp(r̂, r) + Lsim
fsp (r̂, r) (9)

where Lreg
fsp(r̂, r) is the regression loss which is a com-

bination of radius loss Liou
fsp(r̂, r) and the similarity loss

Lsim(r̂, r); Lcls
fsp(ĉ, c) is the classification loss. The radius

loss is a polar intersection-over-union loss (IoU) computed
between the prediction and ground truth labels, defined as

below:

Liou
fsp(r̂, r) = 1.0−

Nbins∏
i=1

min(ri, r̂i)

max(ri, r̂i)
. (10)

The similarity loss is computed between the line segments
formed by joining the end points from the consecutive an-
gular bins in the prediction and ground truth labels. This
loss helps in reducing the noise in the predicted RDM.

Lsim
fsp (r̂, r) =

Nbins∑
i=1

(1.0− l̂i+1
i · li+1

i∥∥∥l̂i+1
i

∥∥∥∥∥li+1
i

∥∥), (11)

where l̂i+1
i is the line segment formed by joining the end

points of r̂i and r̂i+1. li+1
i is defined similarly. Finally, the

classification loss Lcls
fsp(ĉ, c) is the standard focal loss, i.e.,

Lclc
fsp(ĉ, c) =

Nbins∑
i=1

C∑
j=1

(1− pij)
γ log(pij), (12)

where γ is the focal loss parameter.

1.3. 3D Parking Space

Another important aspect of autonomous driving is the
ability to localize and classify parking spaces. Each parking
space is represented as an oriented rectangle, parameterized
by [cx, cy, l, w, θ], where cx and cy are the center coordi-
nates of the box, l and w are the length and the width of the
box in meters respectively, and θ is the orientation of the
box (yaw angle in radians) in the range [0, π). Note that an
oriented box angled at π visually appears the same as a box
oriented at 0, thus the orientation value θ need not cover
the entire angular range of [0, 2π). Knowing the profile of
every parking space is important for planning and control
purposes. As such, every prediction output by our model
will be assigned a parking profile. In the current system
we support three different parking profiles: angled, paral-
lel and perpendicular. As their name suggests, the profiles
denote the types of planning and control maneuvering re-
quired to successfully park the car in the parking space.
Parallel parking spaces are ones that typically appear on
the side of the street and require a parallel parking maneu-
ver. Conversely, angled and perpendicular parking spots
are ones where the car can be parked straight in (or backed
in).

Model. The parking space detection task follows the
same design (head, training strategy and losses) of the ob-
stacle detection task. The parking detection network con-
sists of classification and regression heads. The classifica-
tion head predicts per-profile confidence scores. We rely
on each parking spot’s profile to implicitly encode its exis-
tence score. The regression head predicts the parking space
oriented bounding boxes as discussed above.

Amount
Number of cameras per scene 8
Real training samples 2M
Sim training samples 200k
Validation samples 400K
Test samples 177K
Number of countries 20
Number of obstacle classes 5
Number of freespace classes 3
Number of parking classes 3
Percentage of dry roads 95.17%
Percentage of wet roads 4.83%
Bright light condition 49.5%
Diffused light condition 31.4%
Poor light condition 19.1%

Table 1. In-house dataset summary.

Training Losses. The training loss is similar to that of
the obstacle detection task, but its regression loss function
is much simpler. Let gi and di be a matched pair of ground
truth and detection, the regression loss is defined as:

Lreg
prk(gi,di) =

∑
s∈{cx,cy,l,w,θ}

(gs
i − ds

i)
2. (13)

2. Datasets
Our in-house datasets consist of real, simulated real-

ity and augmented reality data. In total, there are 2.2M
training scenes, 400K validation scenes and 177K testing
scenes. Table 1 summarizes our datasets. Lidar data was
used to generate ground truth labels. Our data contains a
fair amount of noisy labels due to view point differences
between Lidar and camera sensors. For example, Lidar is
mounted at a higher position than cameras, thus there are
obstacles, which may be visible by Lidar, are hardly visible
by cameras. These issue not only affect model training but
also model evaluation (e.g., low recall rates).

3. Evaluation Metrics
3.1. 3D Obstacles

We calculate obstacle detection metrics based on identi-
fying true positives (TP), false positives (FP), and false neg-
atives (FN) from detection outputs and ground truth labels.
For each class, we find one-to-one matching between detec-
tion output and ground truth using greedy algorithm with
the Euclidean distance between their centroids. A match is
valid if the relative radial distance between a prediction and
ground truth objects is less than 10%, and their absolute az-
imuth error is less than 2 degrees. All unmatched detections
become FP while all unmatched ground truth becomes FN.
Once TP, FP, and FN have been identified, we compute pre-
cision, recall, F1-score, AP and mAP KPIs. Moreover, we

search for the best confidence threshold that maximizes F1-
score, and compute regression errors for all true positive de-
tections. Position error measures relative radius error (%),
absolute azimuth error (degrees) and absolute elevation er-
ror (meter). Orientation error is defined as ||log(R−1R̂)||,
whereR and R̂ are ground truth and prediction rotation ma-
trices. Shape error measures relative error for length, width,
and height (%). We also define the safety mAP based on
a safety zone. The safety zone is defined as a rectangular
region around the ego vehicle, i.e., 100 meters ahead and
behind the ego vehicle and 10 meters left and right of the
vehicle.

3.2. 3D Freespaces

Given a pair of ground truth and prediction freespace
RDMs, we compute the following metrics (averaged over
angular bins and frames). Relative gap measures the rel-
ative radial distance errors (%). Absolute gap measures
the absolute radial distance errors (meters). Success rate
measures the percentages of successfully estimated angular
bins. Angular bins are considered as successfully estimated
when the relative gap is less than 10%. Smoothness mea-
sures the total variation of radial distance maps defined as∑Nbins

i=1 |ri−ri−1|. Classification error measures precision
and recall for each label class.

3.3. 3D Parking Spaces

Similar to object detection, we compute precision, recall,
F1 and AP metrics. Intersection over union (IoU) scores are
used to match predictions to ground truth labels. A match
is valid if the IoU ≥ 70%. This strict criteria is necessary
for real-world applications of autonomous parking as small
misalignment between the detection and the actual parking
space position can lead to imperfect parking. We also com-
pute mean IoU values for all true positive detections.

4. Sensor Configurations for Car and Truck
platform.

Figure 1 shows the differences of sensor mounting posi-
tions between a car and truck platforms.

References
[1] Peize Sun, Yi Jiang, Enze Xie, Wenqi Shao, Zehuan Yuan,

Changhu Wang, and Ping Luo. What makes for end-to-end ob-
ject detection? In Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 9934–9944. PMLR, 2021.
1

(a) Car platform.

(b) Truck platform.

Figure 1. Different camera sensor setups for cars and trucks.

