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This supplementary material provides additional details
on our work in three aspects. Section A elaborates on the
design of Category Balanced ImageNet dataset. Section B
presents further information on the training and evaluation
process. Section C exhibits experiment details.

1. Details about Category Balanced ImageNet

To systematically investigate the effect of categorical
factors (animal vs. artifact) on CNNs’ shape and texture
learning, we have meticulously designed this dataset to
avoid disturbance from data imbalance.

1.1. Image Source

To avoid the image source becoming a confounding fac-
tor, all images in Category Balanced ImageNet were se-
lected from a single dataset, namely ImageNet [3]. Ima-
geNet is a suitable source for two main reasons. Firstly, Im-
ageNet has a carefully designed hierarchy, based on which
we can create similar hierarchies for animal and artifact to
ensure fair comparisons. Secondly, ImageNet is a large
dataset, and the subset we built is likely to be sufficiently
large to conduct convincing experiments.

1.2. Dataset Hierarchy

Animal and artifact categories are designed to have
similar hierarchical structures to ensure equal represen-
tations in the dataset for fair comparisons. The dataset
hierarchy is shown in Figure 1. With this restriction, the
dataset has a relatively small number of categories com-
pared to ImageNet (128 vs. 1000). The number 128 is
chosen according to the following rules.

The hierarchy consists of two levels only due to the com-
plexity of ImageNet hierarchy [1], namely the fine-grained

Figure 1. Hierarchy of Category Balanced ImageNet. The coarse
level contains 16 animal categories and 16 artifact categories, each
containing 4 fine-grained categories, resulting in a total of 128
fine-grained categories.

level and the coarse-grained level. Therefore, each image
has two labels. In this work, only fine-grained labels are
used in the experiments, while coarse-grained labels are
only used to ensure that animal and artifact categories have
similar hierarchical structures.

Fine-grained categories are selected from the 1000 cat-
egories of ImageNet2012. Since they are all leaf nodes
in the hierarchy tree, it is reasonable to assume those cat-
egories have similar levels of granularity. Same as Ima-
geNet, each fine category has about 1300 images. Choos-
ing coarse-grained categories is a more elaborate work.
Since all non-leaf nodes in the ImageNet hierarchy are valid
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Coarse Coarse-to-fine Max number of Image
level ratio(M) coarse categories(N) number

phylum - 2 -
class - 7 -
order 3 18 70.2k
order 4 16 83.2k
order 5 14 91.0k
order 6 12 93.6k
order 7 9 81.8k
order 8 8 83.2k
order 9 6 70.2k
order 12 4 62.4k

Table 1. Illustration of candidates for the granularity setting of
animal categories. Our decision is highlighted in bold.

candidates, multiple factors are taken into consideration as
shown in Table 1. Assuming we have N coarse categories,
and each coarse category contains at least M fine categories,
we want both N and M to be as large as possible. However,
there is a trade-off between N and M as shown in Table 1.
Taking the animal part as an example, we first select “or-
der” as the suitable granularity level for coarse categories
based on Linnaean taxonomy. “Phylum” and “class” are
not appropriate, since the maximum number of coarse cat-
egories(N) would be 2 and 7 respectively, which is insuffi-
cient. While if the granularity level for coarse categories is
finer than “order”, such as “family”, the difference in gran-
ularity between coarse and fine categories would be less ap-
parent. Next, to decide the values of M and N, we gradually
increase M and observe how N changes. We finally choose
N as 16 and M as 4 according to the trade-off illustrated in
Table 1. The artifact part is designed with similar consider-
ations.

All categories in Category Balanced ImageNet are illus-
trated in Tables 2 for animals and Table 3 for artifacts, in-
cluding the coarse-to-fine mapping.

2. Training and Evaluation Details

2.1. Shape and Texture Features

Shape and texture features play a crucial role in our main
paper. For experiments presented in Table 1 of the main
paper, these features are utilized for both model training and
testing. For experiments presented in Table 2 of the main
paper, they are employed to generate cue-conflicting images
to assess texture bias. For experiments presented in Table 3
of the main paper, they are incorporated in joint training to
obtain shape and texture-biased models. Visual examples of
shape and texture features are provided in Figure 2.

Figure 2. Illustrations of shape and texture features.

2.2. Implementation Details

This work involves extensive experiments conducted un-
der similar settings. To facilitate file management, we uti-
lize MMpretrain [2], an open-source toolbox based on Py-
Torch [8], for training and testing our models. The training
setup for models trained on different dataset is listed below.

Category-Balanced ImageNet. All models employ the
default ResNet 50 architecture [5] with 100 training epochs.
The following pre-processing steps are applied during train-
ing: resize (to 256x256), center crop (to 224x224), and
channel-wise normalization. Models are trained using SGD
with a momentum of 0.9 and weight decay of 0.0001. The
learning rate is set as 0.025 per GPU, and decays by a factor
of 10 at the 60th and 80th epochs. The batch size is 64.

Office-Home. Apart from the setting above, we employ
the pretrained ResNet18 model to initialize training due to
its limited dataset size.

CIFAR10. Models are trained using SGD with a mo-
mentum of 0.9 and weight decay of 0.0005 with 200 epochs.
The learning rate is set as 0.025 per GPU, and decays by a
factor of 5 at the 60th, 80th, 160th and 190th epochs. The
batch size is set to 128.

Besides, the learning rate reduces correspondingly if
comparable methods fail to converge. Also, the batch size
and learning rate are reduced together correspondingly, for
models trained with online augmentation, due to limited
memory.



Index Coarse categories Fine categories

1 spider tarantula, black widow, wolf spider, argiope aurantia
2 lepidopterous insect monarch, admiral, ringlet, lycaenid
3 beetle tiger beetle, dung beetle, ladybug, rhinoceros beetle
4 decapod crustacean dungeness crab, spiny lobster, king crab, hermit crab
5 salamander eft, axolotl, european fire salamander, common newt
6 turtle terrapin, loggerhead, box turtle, mud turtle
7 lizard green lizard, anole, banded gecko, gila monster
8 snake ring snake, horned viper, thunder snake, boa constrictor
9 parrot lorikeet, sulphur-crested cockatoo, macaw, african grey
10 passerine goldfinch, jay, indigo bunting, water ouzel
11 gallinaceous bird black grouse, quail, prairie chicken, ptarmigan
12 spiny-finned fish puffer, anemone fish, lionfish, rock beauty
13 rodent fox squirrel, marmot, porcupine, beaver
14 primate madagascar cat, chimpanzee, howler monkey, guenon
15 even-toed ungulate llama, hartebeest, warthog, ox
16 carnivore samoyed, persian cat, black-footed ferret, brown bear

Table 2. Animal categories in Category-Balanced ImageNet

Index Coarse categories Fine categories

17 musical instrument bassoon, steel drum, grand piano, sax
18 fastener combination lock, nail, padlock, buckle
19 wheeled vehicle racer, sports car, police van, jinrikisha
20 watercraft liner, fireboat, submarine, catamaran
21 vessel whiskey jug, beer bottle, beaker, mortar
22 tool plunger, screwdriver, plane, hammer
23 cooking utensil crock pot, teapot, coffeepot, spatula
24 electronic equipment cd player, oscilloscope, monitor, computer keyboard
25 ball soccer ball, rugby ball, basketball, punching bag
26 furniture day bed, cradle, entertainment center, folding chair
27 home appliance iron, espresso maker, washer, refrigerator
28 headdress cowboy hat, mortarboard, shower cap, sombrero
29 garment stole, sweatshirt, abaya, sarong
30 building greenhouse, monastery, library, mosque
31 shop tobacco shop, butcher shop, bakery, toyshop
32 barrier worm fence, picket fence, grille, chainlink fence

Table 3. Artifact categories in Category-Balanced ImageNet

3. Experiment Details

3.1. Detailed results for models trained by individ-
ual shape or texture features

In our main paper, models are trained by the combined
datasets of all shape features or all texture features. The
results regarding individual shape (Selfinfo and Cannyedge)
or texture (P4, P8 and P16) features are illustrated in Table
4 for i.i.d case and o.o.d case.

3.2. Details of texture bias evaluation for animals
and artifacts

As animal and artifact categories demonstrate distinct
characteristics, we guess that whether a model is shape or
texture-biased heavily depends on the dataset categories.
We further conduct experiments to investigate models’ tex-
ture bias regarding animal and artifact categories. We
train models on the original dataset and test on the cue-
conflicting dataset, with images generated by adding up the
shape and texture features of two randomly selected images.
Texture bias is calculated as the ratio of the number of times



Train set Test set
i.i.d case o.o.d case

Shape Texture Ratio Shape Texture RatioSI CE avg P4 P8 P16 avg SI CE avg P4 P8 P16 avg
Animals Animals 71 66 68 79 76 69 75 0.92 29 24 27 33 28 23 28 0.96
Artifacts Artifacts 72 68 70 70 63 53 62 1.13 34 29 32 28 21 15 21 1.48

Animals 71 65 68 81 77 68 75 0.90 29 23 26 33 27 21 27 0.95
All Artifacts 72 69 71 72 66 55 64 1.10 32 28 30 28 21 15 21 1.41

All 71 67 69 76 71 61 70 1.00 30 25 28 30 24 18 24 1.15

Table 4. Accuracy (%) of models trained and tested on individual shape/texture features in i.i.d and o.o.d cases.

Method avg Noise Blur Weather Digital
Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Vanilla ResNet 79.2 88.3 90.0 92.1 74.8 84.6 79.0 78.8 83.1 77.9 66.5 54.0 75.3 79.5 81.6 82.5
Cutout 79.7 93.2 94.1 96.6 73.7 86.6 79.9 77.7 82.3 77.2 65.0 53.7 73.9 79.8 81.0 80.5
Mixup 71.0 78.2 80.7 80.4 73.7 84.6 74.0 72.9 72.9 56.0 46.4 48.0 58.8 75.1 84.6 78.9
Cutmix 79.8 88.0 89.9 92.9 74.3 88.0 79.3 70.2 78.4 74.9 60.3 50.9 72.5 77.7 108.8 91.1

Patch Gaussian 74.8 67.0 71.6 71.0 75.5 85.5 80.1 76.8 84.9 78.3 65.0 54.8 74.6 79.9 77.7 78.8
Stylized IN 63.0 63.7 68.7 57.9 67.0 75.1 66.9 84.0 63.7 61.9 42.9 48.5 48.1 68.2 59.4 69.1

AutoAugment 68.9 64.3 63.8 63.9 74.4 86.6 77.9 86.8 73.6 64.2 43.8 41.5 37.9 89.8 85.0 79.9
Augmix 61.6 60.4 59.9 59.1 60.7 78.0 53.2 60.4 65.7 60.5 40.9 44.7 44.2 70.9 86.6 73.7

APR 58.9 48.9 53.4 53.5 61.4 83.3 57.1 72.6 53.6 51.3 30.7 40.3 42.3 81.5 72.6 81.4
STAR identi-heads 60.7 56.5 55.7 55.7 63.0 79.0 52.3 58.5 63.1 58.2 41.4 44.0 47.2 68.8 91.0 75.5

STAR(ours) 57.4 55.5 54.4 56.1 55.3 73.7 47.4 53.8 60.7 55.9 41.2 42.8 46.4 68.8 79.7 70.1

Table 5. The corruption errors (%) of comparable methods across 15 corruption scenarios. The best results are highlighted in bold and the
second bests are underlined. Our proposed method consistently improves model robustness across diverse o.o.d scenarios.

Figure 3. Illustrations of two cue-conflicting images and their clas-
sification results.

the model classifies images to their texture labels, to the
number of times it classifies images to either shape or tex-
ture labels.

As proposed by Geirhos et al., researchers usually evalu-

ate texture bias using a cue-conflicting test set [6,10], which
contains images generated by style transfer using shape in-
formation from one category and texture information from
another.

However, this test set is not suitable for our experiments
for several reasons. Firstly, it employs style transfer to gen-
erate images, which introduces potential biases as the pre-
trained generator may have learned shape and texture infor-
mation from additional training datasets. Secondly, artifact
texture is represented by repeated objects (i.e. a collection
of bottles) while animal texture is represented by fur im-
ages. This discrepancy could act as a confounding factor
for model biases. Thirdly, Geirhos’s cue-conflicting dataset
covers only approximately one-third of the categories in the
training dataset, making it unclear whether the results can
accurately represent the behavior of the entire model.

In this work, cue-conflicting images are generated by
simply adding up the shape and texture features of two ran-
domly selected images (i.e. cannyedge + p4, selfinfo + p16).
In our approach, we avoid using additional datasets, em-
ploy unified generation methods for animals and artifacts,
and ensure that all categories are covered during the testing
stage. We provide visual examples of these cue-conflicting
images in Figure 3.

As shown in Table 2 of the main paper, it is evident that
models exhibit much higher texture bias on animal cate-
gories than on artifact categories. We believe that the differ-



ent levels of texture bias are related to the category’s intrin-
sic discriminative feature. Extended experiments using ar-
chitectures including AlexNet [7], Vgg16 [9] and VIT-B [4]
are shown in Table 6, proving that our conclusions are ar-
chitecture invariant (We only repeat the experiments on the
setting where all 128 categories are used in training, with
animal/artifact sub-datasets tested separately). These exper-
iments reveal an essential fact for researchers investigating
shape and texture bias: categorical factors significantly
impact the model’s texture bias, and they should be con-
sidered seriously during texture bias analysis. For in-
stance, if a model has higher texture bias on dataset A than
on dataset B, it is also likely that dataset A contains a higher
proportion of animal images. Besides, the recommenda-
tion of using category-balanced datasets is reinforced
since shape-texture bias heavily depends on the training
categories.

Architecture i.i.d case o.o.d case
animal artifact animal artifact

AlexNet 0.759 0.590 0.758 0.610
VGG16 0.785 0.669 0.740 0.620

VIT 0.925 0.780 0.846 0.665

Table 6. Texture bias ([0,1]) of various models.

3.3. Validation the role of Ht

As illustrated in Table 7, Ht shows higher accuracy
for all blurs and elastic transformations over the other two
heads.

Head avg defocus glass motion zoom elastic
Hs 62.0 58.1 49.8 68.0 65.5 68.7
Ht 64.4 61.3 51.4 70.7 68.1 70.3
Hd 63.5 60.0 50.5 69.9 67.3 69.7

Table 7. Accuracy (%) of Hs,Ht,Hd on test data with defocus,
glass, motion, zoom blurs and elastic transformation.

3.4. Detailed results for individual corruption o.o.d
scenarios

The complete results regarding individual o.o.d cases in
ImageNet-C for all comparable methods are shown in Ta-
ble 5. It can be seen that our proposed method consistently
improves model robustness across diverse o.o.d scenarios.
Especially for blurs, STAR outperforms other methods by
a great margin, highlighting the advantages of using robust
texture information extracted by the texture-biased head.
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