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Abstract

This document is intended for the convenience of the
reader and reports additional information about the col-
lection and the annotations of the ENIGMA-51 dataset, as
well as implementation details of the adopted baselines.
This supplementary material is related to the following pa-
per: ENIGMA-51: Towards a Fine-Grained Understand-
ing of Human Behavior in Industrial Scenarios, IEEE/CVF
Winter Conference on Applications of Computer Vision
(WACV), 2024. The reader is referred to the aforementioned
manuscript for further information, and to our web page
https://iplab.dmi.unict.it/ENIGMA-51 to
download the dataset.

1. The ENIGMA-51 Dataset

The ENIGMA-51 dataset has been acquired in an in-
dustrial laboratory by 19 subjects who wore a Microsoft
Hololens 2 providing audio instructions to follow to com-
plete a repair procedure of electrical boards. The dataset
is composed of 51 egocentric videos. Each video includes
a complete repair procedure of an electrical board where
movable objects (see Section 1.2.1) were placed in random
positions on the working table. Each subject acquired at
least one video for each electrical board (high and low volt-
age) obtaining a total of 51 videos. The dataset was di-
vided into training, validation, and test sets. Each set con-
tains videos acquired from different subjects, and there is
no overlap between the subjects in any of the sets. Figure 1
shows the industrial laboratory in which the ENIGMA-51
dataset has been acquired.

1.1. Instruction for repair procedures

We designed two procedures composed of instructions
that involve humans interacting with the objects of the lab-
oratory to achieve the goal of repairing two different elec-
trical boards. These procedures have been designed with
the support of industrial experts with the aim of captur-
ing realistic human-object interactions in a real industrial
domain. Specifically, we designed a procedure for each
electrical board: High Voltage Repair and Low Voltage Re-
pair. Then, for each procedure we forced the use of one
of the electric or standard screwdrivers and the soldering
of one of the resistor/capacitor/transformer electrical com-
ponents, obtaining four variants of each procedure. Each
procedure is designed to allow the worker to interact with
all the industrial objects and electric machinery present in
the laboratory. With the provided instructions, we expected
users to interact with movable objects (e.g., “Take the sol-
dering iron’s probe” or “Place the electric board on the
working area”) and with fixed machinery (e.g., ‘‘Press the
two green buttons on panel A” or “Adjust the voltage knob
of the power supply to set a voltage of 5 Volts”). As ex-
ample, Table 1 reports a complete repair procedure for the
low-voltage electric board using the standard screwdriver
and soldering the capacitor. To provide instructions to the
user without the use of physical manuals, we developed an
application for the Microsoft HoloLens 2.

1.1.1 HoloLens2 acquisition application

We developed an application for Microsoft HoloLens 2 us-
ing the Unit 3D graphic engine to provide instructions to
the participants during the acquisition. In particular, the ap-
plication helps the operators during the acquisition phase,
providing audio instructions and showing images to facili-
tate complex operations (e.g., where to connect the oscillo-
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Figure 1. The ENIGMA-51 dataset has been acquired in an industrial laboratory. We show some interaction key frames with the related
verb (in green) and the object involved in the interaction (in orange).

Figure 2. A screenshot captured from the developed application,
during the acquisition phase.

scope ground clip). Figure 2 shows an example of the ac-
quisition tool. The application integrates voice commands
for the human-device interaction (e.g. the possibility to say
“next” or “back” over the steps of the procedure). The audio
guide describes the operations to be performed during the
acquisitions. To create these audio tracks, a Python script
has been created that utilizes the gTTS library for interact-
ing with Google Translate APIs. This script takes an input
text file divided into textual blocks and converts it into a set
of MP3 audio tracks. After wearing the device, the operator
will interact with the application using the following voice
commands:

• Forward: to play the audio track for the next set of
instructions.

• Backward: to play the audio track of the previous set
of instructions.

• Repeat: to replay the audio track for the current set of
instructions.

• Record: Using this command, the operator starts
video recording (the application will play a sound for
confirmation).

• Stop: Using this command, the operator stops the
video recording (the application will play a sound for
confirmation).

1.2. Data Annotation

1.2.1 Object Annotations

In our industrial setting, we considered both fixed (e.g., os-
cilloscope, power suppl) and movable objects (e.g., screw-
driver, electric boar) present in the industrial laboratory. In
particular, our object taxonomy is composed of 25 different
objects: power supply, power supply cables, oscilloscope,
oscilloscope probe tip, oscilloscope ground clip, welder sta-
tion, welder base, welder probe tip, electric screwdriver,
electric screwdriver battery, battery connector, screwdriver,



Step Description Step Description Step Description
1 Sit at the workbench 41 Place the pliers on the workbench 81 Place the pliers on the workbench
2 Pronounce the voice command “Record” to start record-

ing, and wait for the acoustic signal for confirmation
42 Lower the soldering iron temperature to the minimum

(160°C) using the yellow “DOWN” button
82 Place the pliers on the workbench

3 Turn the lamp located on the workbench on and off
while looking at it

43 Turn off the soldering iron using the socket switch 83 Turn off the soldering iron using the socket switch

4 Exit the laboratory 44 Fix the board to the workbench using the screwdriver 84 Connect the display to the board
5 Enter the laboratory and close the door 45 Observe the power supply 85 Turn on the power supply using the socket switch
6 Go to panel A and observe it for a moment 46 Adjust the current knob of the power supply until the

green LED lights up
86 Adjust the power supply voltage knob to set a voltage of

5 Volts
7 Press the two green buttons on panel A 47 Connect the power supply cables to the board’s power

points
87 Connect the power supply cables to the board’s power

points
8 Head back to the workbench and sit down 48 Observe the board for a few seconds to verify the red

LED turning on
88 Observe the power supply

9 Observe the low-voltage board for a while 49 Turn off the power supply using the socket switch 89 Turn off the power supply using the socket switch
10 Take the low-voltage board and place it on the work area 50 Set the current and voltage knobs of the power supply to

0
90 Set the current and voltage knobs of the power supply to

0
11 Remove the screws from the workbench using the

screwdriver
51 Disconnect the clip and probe of the oscilloscope 91 Disconnect the power supply cables

12 Secure the board to the workbench using the screwdriver 52 Turn on the oscilloscope using the socket switch 92 Observe the board for a few seconds to verify the red
LED turning on

13 Observe the power supply 53 Activate channel 2 of the oscilloscope using the “CH2
MENU” button with a blue outline

93 Turn on the oscilloscope using the socket switch

14 Turn on the power supply using the socket switch 54 Connect the ground clip of the probe to test point 1 94 Activate channel 2 of the oscilloscope using the “CH2
MENU” button

15 Adjust the current knob of the power supply until the
green LED lights up

55 Use the probe tip to check for signals at test point 2 on
the board

95 Connect the ground clip of the probe to test point 1

16 Adjust the voltage knob of the power supply to set a volt-
age of 5 Volts

56 Press the “Auto Set” button on the oscilloscope 96 Use the probe tip to check for signals at test point 2 on
the board

17 Connect the power supply cables to the board’s power
points

57 Observe the oscilloscope’s display 97 Press the “Auto Set” button on the oscilloscope

18 Observe the board for a few seconds to verify the red
LED turning on

58 Rotate the “position” knob above the “CH2 MENU” but-
ton with a blue outline randomly

98 Observe the oscilloscope’s display

19 Turn off the power supply using the socket switch 59 Repeat the previous three steps for the remaining test
points (from number 3 to number 7)

99 Rotate the “position” knob above the “CH2 MENU” but-
ton with a blue outline randomly

20 Set the current and voltage knobs of the power supply to
0

60 Set the current and voltage knobs of the power supply to
0

100 Repeat the previous three steps for remaining test points
(from number 3 to number 7)

21 Disconnect the power supply cables 61 Disconnect the ground clip and probe from the oscillo-
scope

101 Turn off the power supply using the socket switch

22 Remove the board from the workbench using the screw-
driver

62 Deactivate channel 2 of the oscilloscope 102 Set the current and voltage knobs of the power supply to
0

23 Unscrew the 4 screws on the back of the board using the
screwdriver

63 Turn off the oscilloscope using the socket switch 103 Disconnect the ground clip and probe from the oscillo-
scope

24 Remove the display from the board 64 Remove the board from the workbench using the screw-
driver

104 Deactivate channel 2 of the oscilloscope

25 Observe the soldering iron 65 Observe the soldering iron 105 Turn off the oscilloscope using the socket switch
26 Turn on the soldering iron using the socket switch 66 Turn on the soldering iron using the socket switch 106 Remove the board from the workbench using the screw-

driver
27 Set the soldering iron temperature to 200 degrees using

the yellow “UP” button
67 Set the soldering iron temperature to 200 degrees using

the yellow “UP” button
107 Observe the soldering iron

28 Grab the black capacitor on the board with pliers 68 Grab the black capacitor on the board with pliers 108 Turn on the soldering iron using the socket switch
29 Take the soldering iron’s probe 69 Take the soldering iron’s probe 109 Set the soldering iron temperature to 200 degrees using

the yellow “UP” button
30 Touch the first pin of the black capacitor with the solder-

ing iron’s probe for 5 seconds
70 Touch the first pin of the black capacitor with the solder-

ing iron’s probe for 5 seconds
110 Head to panel A

31 Touch the second pin of the capacitor for 5 seconds with
the soldering iron’s probe

71 Touch the second pin of the capacitor for 5 seconds with
the soldering iron’s probe

111 Observe panel A for a moment

32 Place the pliers on the workbench 72 Place the pliers on the workbench 112 Press the two red buttons on panel A
33 Place the soldering iron’s probe 73 Place the soldering iron’s probe 113 Head to the door
34 Place the board vertically 74 Place the board vertically 114 Exit the laboratory
35 Grab the black capacitor on the board with pliers 75 Grab the black capacitor on the board with pliers 115 Enter the laboratory
36 Take the soldering iron’s probe 76 Take the soldering iron’s probe 116 Pronounce the voice command “Stop” to end the record-

ing, hear an acoustic signal for confirmation
37 Touch the first pin of the black capacitor on the back of

the board for 5 seconds
77 Touch the first pin of the black capacitor on the back of

the board for 5 seconds
38 Touch the second pin of the capacitor on the back of the

board for 5 seconds
78 Touch the second pin of the capacitor on the back of the

board for 5 seconds
39 Place the soldering iron’s probe 79 Place the soldering iron’s probe
40 Place the board on the work area 80 Place the board on the work area

Table 1. Low Voltage Board Repair Procedure (Standard Screwdriver Version)

pliers, high voltage board, low voltage board, low volt-
age board screen, register, left red button, left green but-
ton, right red button, right green button, socket 1, socket
2, socket 3, and socket 4. Figure 3 reports the object class
distribution grouping them into fixed and movable objects.
The dataset has been labelled manually by a group of an-
notators that used the VGG Image Annotator [16] with a

custom project (see Figure4).

1.2.2 Utterances

Classifying intents and entities within the industrial domain
can be beneficial in the development of intelligent assis-
tants that support workers during their interactions and en-
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Figure 3. We report the object class distribution over the 51 videos of ENIGMA-51 grouping them into two categories: fixed (orange) and
movable (blue).

Figure 4. VGG Image Annotator tool.

sure enhanced workplace safety. Using the instructions that
guided participants to acquire the ENIGMA-51 dataset, we
obtained 265 textual utterances that simulate the kinds of
questions a worker may have for a supervisor colleague as
they carry out a procedure in an industrial setting. We man-
ually labelled these utterances as “intents” (e.g. “object-
instructions”) considering a taxonomy of 24 classes and as
“entities” (e.g. “object”) considering 4 entity types. Table 2
reports the list of the 24 intent classes with an associated
description. Each entity has been annotated using square
brackets to denote its starting and ending characters in the

text and round brackets to enclose the entity type. As a
result, each entity is annotated following the [entity](type)
form. Table 3 reports the list of the 4 considered entities.

To enrich this set of utterances, we generated similar ut-
terances through the prompting of ChatGPT [11], obtaining
100 unique utterances for each intent. Due to the unique
structure of “inform” utterances, which consist of only an
entity and optionally an article, generating a set of 100 utter-
ances was unfeasible; hence, a total of 10 utterances for the
“inform” intent were produced. The “inform” intent is de-
fined for conversations in which a worker’s question cannot
be adequately answered solely by performing slot filling on
their initial utterance. This is often the case when some of
the required entities for formulating an appropriate response
are missing. For example, in the following conversation:

• Worker: What’s this object? I don’t know how to use
it.

• Assistant: Which object?

• Worker: The oscilloscope.

The worker’s first utterance falls under the “object-
instructions” intent, whereas the worker’s second utter-



Intent Description
“greet” Greet and start a conversation
“procedure-tutorial” Ask a specific question about the ongoing procedure
“object-warnings” Know if there are alerts for a specific object
“turn-object-on” Turn on an object
“turn-object-off” Turn off an object
“which-ppe-procedure” Know which PPE is required to perform a specific procedure
“which-ppe-object” Know which PPE is required to use a specific object
“object-instructions” Know how to use a specific object
“is-object-on” Find out if an object is turned on or off
“object-time” Find out how long an object has been used
“where-board” Know where a specific electronic board is located, or identify it on the working area
“board-detail” Know the location of a component on an electronic board
“where-object” Know where a specific object is located, or identify it on the working area
“object-detail” Know the location of a component on an object
“start” Start a procedure
“next” Hear the next step in the ongoing procedure
“previous” Hear the previous step in the ongoing procedure
“repeat” Hear the current step in the ongoing procedure
“all-objects” Know what objects are present in the laboratory
“ok-objects” Know what objects can be used
“on-objects” Know what objects are powered
“where-ppe” Know where the PPEs are located
“inform” Specify an entity
“out-of-scope” This category includes all questions that are not relevant to the previous intents

Table 2. The 24 intent classes considered during our collection.

Entity Example
“object” [soldering iron](object)
“board’ [low voltage](board)
“component” [display](component)
“procedure” [repair](procedure)

Table 3. The table reports our entity taxonomy composed of 4
classes.

ance falls under the “inform” intent. Examples of ut-
terances belonging to the inform intent include “[high
voltage](board) board [testing](procedure) procedure” and
“[screwdriver](object)”.

The used prompt for each intent, except for “inform” and
“out-of-scope” intents, was the following: “Imagine being
an operator working inside an industrial laboratory. You
can communicate with someone who knows the laboratory
perfectly, including all the present objects and possible pro-
cedures that can be carried out. There are several intents
you could have while operating within this industrial lab-
oratory. This is one: <intent description>. Since you’ll
have to communicate with the other person through text
messages, try to avoid all forms of greeting and politeness.
For this intent, imagine 100 unique sentences you would say

to your interlocutor to express your intent and achieve the
desired result.” Please note that <intent description> was
replaced with the description of each specific intent, using
the descriptions listed in Table 2. Exceptions were made
for the “inform” intent, for which we prompted the model
to generate 10 unique sentences, and the “out-of-scope” in-
tent, for which we used the following prompt: “Imagine
being an operator working inside an industrial laboratory.
You can communicate with someone who knows the labo-
ratory perfectly, including all the present objects and pos-
sible procedures that can be carried out. There are sev-
eral intents you could have while operating within this in-
dustrial laboratory, which I will list below: <full list of
intent descriptions>. Since you’ll have to communicate
with the other person through text messages, try to avoid
all forms of greeting and politeness. Knowing these in-
tents, generate 100 unique sentences that are out of scope.”
Please note that <full list of intent descriptions> was re-
placed with the full list of intent descriptions listed in Ta-
ble 2. Examples of the obtained utterances include: “Pro-
vide [high voltage](board) board [repair](procedure) pro-
cedure tutorial now.”, “Quick status check: alerts for [bat-
tery charger](object)?”, “I require an image of the [dis-
play](component) that belongs to the [low voltage](board)
board.”, “Where’s the PPE kept?”, “[high voltage](board)



Figure 5. The acquired 3D models of the laboratory and some
industrial objects within the set of ENIGMA-51.

board [testing](procedure) procedure” and “I need help
with my car’s engine trouble; can you assist me?” for
the “procedure-tutorial” “object-warnings” “board-detail”
“where-PPE”, “inform”, “out-of-scope” respectively.

As ChatGPT was not able to generate 100 unique utter-
ances, we carried out additional duplicate filtering and re-
prompted the model in order to generate more utterances,
until we met the criteria of gathering 100 unique utterances
for each intent. We hypothesize that the inability to gener-
ate a set of unique utterances is due to the many constraints
expressed in our prompt, which on the other hand was de-
signed to generate utterances that reflected the real ones col-
lected in the same laboratory setting.

1.3. Additional Resources

1.3.1 3D models of the laboratory and objects

To enable the use of synthetic data to train scalable meth-
ods, we acquired the 3D models of the laboratory and all the
25 industrial objects. We used two different 3D scanners to
create 3D models. Specifically, we used the structured-light
3D scanner Artec Eva1 for scanning the objects, and the
MatterPort2 device to scan the industrial laboratory. Fig-
ure 5 illustrates the 3D models of the laboratory and some
industrial objects within the set of ENIGMA-51. The 3D
model of the laboratory weighs 30MB and covers an area
of approximately 20 square meters, instead, the weight of
the object’s 3D model varies from 5 to 20 MB.

1.3.2 Hands and Objects Segmentation using SAM-
HQ

SAM-HQ [7] is an advanced extension of the Segment Any-
thing Model (SAM [8]), designed to enhance the segmen-
tation of complex objects. SAM originally offered impres-
sive scaling and zero-shot capabilities, but its mask predic-
tion quality fell short, especially with intricate structures.
To address this limitation, the authors of [7] proposed HQ-
SAM, which retains SAM’s promptable design, efficiency,
and zero-shot generalizability while accurately segmenting

1https://www.artec3d.com/portable-3d-scanners/
artec-eva

2https://matterport.com/

SAM-HQ SAM

Figure 6. Comparison between SAM-HQ (left) and standard SAM
(right). We reported also the bounding boxes (in green) used to
generate segmentation masks.

any object. Considering the challenging nature of the indus-
trial objects of the ENIGMA-51, we opted to use SAM-HQ
as it proves to be a suitable solution for accurate segmen-
tation. Figure 6 shows a comparison between SAM and
SAM-HQ showing the better accuracy of the segmentation
masks generated by SAM-HQ for wires and small buttons.
Implementation details: For the mask extraction, we
used the SAM-HQ code provided in the official reposi-
tory3. We used the bounding-box annotations from the
ENIGMA-51 dataset to prompt SAM-HQ, which enabled
the generation of the desired masks. The checkpoint file
“sam hq vit h.pth”, pretrained on HQSeg-44K [7], was
used for the model. During the inference phase, SAM-HQ
generated a total of 55,427 hand masks and 270,519 object
masks. The inference process required 6 hours using an
NVIDIA A30 GPU. The semantic masks have been orga-
nized in structured JSON files, and they are released with
the ENIGMA-51 dataset.

1.3.3 Hand keypoints using MMPose

Since the hands represent the channel with which humans
interact with the objects, we extracted hand keypoints us-

3https://github.com/SysCV/sam-hq

https://www.artec3d.com/portable-3d-scanners/artec-eva
https://www.artec3d.com/portable-3d-scanners/artec-eva
https://matterport.com/
https://github.com/SysCV/sam-hq


ing the MMPose [3] framework with the aim of releas-
ing pseudo-labels useful to study human-object interactions
with the proposed ENIGMA-51 dataset. MMPose [3] is a
useful open-source toolbox based on PyTorch, serving as
part of the OpenMMLab project able to simultaneously de-
tect the hands and localize their 2D keypoints.
Implementation detail: We used the code provided in the
official repository4. Since MMPose requires an input hand
box, we used our hand annotations. We employed the pre-
trained “onehand10k” model, which has been trained on
images belonging to the Onehand10K [18] dataset with a
resolution of 256x256. The model outputs keypoints for
each hand, and each keypoint is associated with a confi-
dence score ranging from 0 to 1. The confidence score
allows us to filter out keypoints with lower accuracy. We
saved all the extracted information in a JSON file. In total,
we processed 30,747 left-hand bounding boxes and 24,680
right-hand bounding boxes using the MMPose framework.
Figure 7 shows some examples of 2D hand keypoints ex-
tracted with MMPose.

1.3.4 Features extraction using DINOv2

DINOv2 [12] is a family of foundation models that produce
universal features suitable for both image-level visual tasks
(such as image classification, instance retrieval, and video
understanding) and pixel-level visual tasks (including depth
estimation and semantic segmentation).
Implementation detail: We used the official implementa-
tion 5 with the publicly available dinov2 vitg14 pre-trained
model. Image preprocessing involved a transformation
pipeline consisting of resizing and centre cropping the im-
ages to a resolution of 224x224, followed by converting
them to tensors and applying normalization with mean and
standard deviation values of ImageNet. Each frame was
then processed using the model, obtaining a tensor of size
(1, 1536). The output tensors representing the extracted fea-
tures were saved in .npy format and they will be released
with the ENIGMA-51 dataset.

1.3.5 Features extraction using CLIP

To provide a set of features allowing further analysis and the
study of downstream tasks with the ENIGMA-51 dataset,
we exploited CLIP [13] to extract text-image represen-
tations. We also used these features to explore human-
object interactions with foundational models trained with
generic and diverse data and without domain-specific data.
CLIP [13] is an advanced method for image representation
learning from natural language supervision. It involves joint
training of image and text encoders to predict correct pair-

4https://github.com/open-mmlab/mmpose
5https://github.com/facebookresearch/dinov2

Figure 7. Hand Keypoints extracted with MMPose.

ings of (image, text) training examples. CLIP’s architecture
includes a simplified version of ConVIRT [20] trained from
scratch, allowing for efficient and effective image represen-
tation learning.
Implementation details: We used the public implementa-
tion available to the following GitHub repository: https:
//github.com/moein-shariatnia/OpenAI-
CLIP. The pretrained ViT-L/14@336px model has been
used, and the images were processed through a specific pre-
processing step composed of resizing, center cropping, ten-
sor transformation, and normalization. The output of CLIP
is a tensor of size (1, 768) which is saved in .npy format. All
the extracted features will be released with the ENIGMA-51

https://github.com/open-mmlab/mmpose
https://github.com/facebookresearch/dinov2
https://github.com/moein-shariatnia/OpenAI-CLIP
https://github.com/moein-shariatnia/OpenAI-CLIP
https://github.com/moein-shariatnia/OpenAI-CLIP


dataset.

2. Benchmark and Baselines Details

2.1. Untrimmed Temporal Detection of Human-
Object Interactions

Starting from the manually labeled timestamp of a key
interaction, we defined the ground truth interaction tem-
poral boundaries to employ our baseline based on Action-
Former [19]. We tested two different strategies to set the
interaction temporal boundaries. The first consists of set-
ting the start and end boundaries 15 frames before and after
the labeled timestamp, respectively. Instead, in the second
approach we set the action start at labeled interaction times-
tamp and we determined the action end empirically, allow-
ing the model to observe hand movements after the labeled
interaction timestamp for “take” and “release” actions. For
“first contact” and “de-contact” interactions, the action end
time was set 15 frames prior to the annotated timestamp.

The second approach demonstrated a better consistency
in comparison to the first, despite yielding comparable mp-
mAP scores during evaluations of “take” and “release” in-
teractions (41.45% versus 42.27%). In particular, when ap-
plying a temporal threshold of 1 second, the second strategy
yielded a p-mAP of 27.40%, distinctly outperforming the
11.25% achieved by the first. This observation highlights
that although both methods produce comparable results, the
second approach has an advantage in setting the action at
the labeled timestamp. This ensures reliable performance
even at lower time thresholds.
Implementation Details: We have used a Two-Stream (TS)
network [17] to extract video features. Each video chunk
is set to a size of 6, and there is no overlapping between
adjacent chunks. With a video frame rate of 30, we get
5 chunks per second. For appearance features, we extract
data from the Flatten 673 layer of ResNet-200 [5] from the
central frame of each chunk. Motion features are extracted
from the global pool layer of BN-Inception [6] from optical
flow fields computed from the 6 consecutive frames within
each chunk. Motion and appearance features are then con-
catenated. We used models pre-trained on ActivityNet to
extract these feature vectors6.

We tested different numbers of levels of feature pyra-
mid and different regression ranges. We found reliable re-
sults when using 3 levels of the feature pyramid, respec-
tively, with a regression range of [0, 2], [2, 5], [5, 10000].
We trained the model for 60 epochs using a learning rate
of 0.0001, 5 warmup epochs, and a weight decay of 0.05,
following a cosine scheduler. All the experiments were con-
ducted using 4 Nvidia A30 graphics cards.

6https://github.com/yjxiong/anet2016-cuhk.

Figure 8. Qualitative results of the adopted baseline for the EHOI
detection task.

2.2. Egocentric Human-Object Interaction Detec-
tion

To perform the experiments for the EHOI detection task
using the baseline based on [9], we used a machine with
a single NVIDIA A30 GPU and an Intel Xeon Silver 4310
CPU. We scaled all the images to a resolution of 1280x720
pixels. We trained the model using the Stochastic Gradi-
ent Descent (SGD) for 80,000 iterations, an initial learning
rate of 0.001, which is decreased by a factor of 10 after
40,000 and 60,000 iterations, and a minibatch size of 4 im-
ages. Figure 8 shows qualitative results of the adopted base-
line. These qualitative results provide insights into the im-
portance of incorporating domain-specific data during the
training phase to extract objects knowledge useful to pro-
vide services to workers in the industrial domain.

https://github.com/yjxiong/anet2016-cuhk


2.3. Short-Term Object Interaction Anticipation

We achieve the short-term object interaction anticipation
task with our baseline based on [14]. Figure 9 shows some
qualitative results. In the first row we reported correct pre-
dictions, while in the second one we reported wrong predic-
tions. The predictions are represented with the green bound-
ing boxes reporting the score, the noun and verb classes and
the TTC, while the ground truth is shown in red with the
name and verb classes and the TTC.
Implementation Details: At training time, to obtain high-
resolution images and low resolution videos, we used the
same parameters used in [14]. At test time, we feed to the
networks still images of height H = 800 pixels and videos of
height h = 256 pixels. The 2D backbone of the still branch
is a ResNet-50 architecture. The weights of this backbone
and the ones of the standard feature pyramid layer are ini-
tialized from a Faster R-CNN model [15] pre-trained on the
COCO dataset [10]. The 3D network which composes the
fast branch is an X3D-M model [4] pre-trained on Kinet-
ics [2]. The model has been trained with a base learning
rate of 0.001 and a weight decay of 0.0001. The learning
rate is lowered by a factor of 10 after 15 and 30 epochs. The
model is trained in half precision on four NVIDIA V100
GPUs with a batch size of 32.

2.4. Natural Language Understanding of Intents
and Entities

We split our real dataset using an 80:20 ratio, with an
identical test split employed across all experiments, which
is uniformly distributed across intent and entity classes.

DIETClassifier [1] was adopted for intent and entity pre-
diction. The model has been trained on an Intel Core i5
CPU for 100 epochs with a learning rate of 0.001 and a
variable batch size which linearly increases for each epoch
from 64 to 256.

Table 4 reports the results for the intent classification
task (first four columns) and for the entity classification task
(last four columns). Five different variations of the training
set were explored: real data, real data + G10 data, real data
+ G50 data, real data + G100 data, and G100; and four dif-
ferent metrics were used for both intent and entity classifi-
cation task: accuracy, precision, recall, and F1-score. The
best results for the intent classification task have been ob-
tained using only real data for training, with an accuracy,
precision, recall, and F1-score of 0.867, 0.840, 0.867, and
0.844 respectively. However, using only generated data
(G100) for training leads to poorer performances, with an
accuracy, precision, recall, and F1-score of 0.584 (-0.283),
0.622 (-0.218), 0.584 (-0.283), 0.564 (-0.280) respectively.
These results, in conjunction with the difficulties encoun-
tered during the prompting process, suggest that generated
data does not fully reflect real utterances, and modern gen-
erative models may not accommodate all the constraints im-

posed by our specific context, thus affecting the model’s
performance. Exploring the use of combinations of real
and generated data for training, we observe the best perfor-
mances when the generated data is not predominant over the
real data. In fact, we obtained an accuracy, precision, recall,
F1-score of 0.830 (-0.037), 0.822 (-0.018), 0.830 (-0.037),
and 0.815 (-0.029) respectively using real data and G10 for
training, an accuracy, precision, recall, F1-score of 0.792
(-0.075), 0.788 (-0.052), 0.792 (-0.075), 0.773 (-0.071) re-
spectively using real data and G50 for training, and an ac-
curacy, precision, recall, F1-score of 0.792 (-0.075), 0.794
(-0.046), 0.792 (-0.075), 0.784 (-0.060) respectively using
real data and G100. The performance deteriorates signifi-
cantly with the addition of G10 to real data, subsequently
showing a gradual decline as more generated data is intro-
duced, ultimately stabilizing as G100 is added.

Regarding entity classification, the results show that gen-
erated data alone is able to represent entities as how they’re
encountered in the real setting. In fact, best results are at-
tained using G100 alone for training with an accuracy, pre-
cision, recall, and F1-score of 1.0, 1.0, 1.0, 1.0 respectively.
However, real data itself attains near-perfect performances,
with an accuracy, precision, recall, and F1-score of 0.994
(-0.006), 0.965 (-0.035), 1.0 (±0), 0.981 (-0.019) respec-
tively.

Figure 10 presents qualitative results for three distinct
utterances for both intent and entity classification tasks.
In the top row, we observe an utterance with an incorrect
intent prediction (“object-instructions” instead of “object-
warnings”) with a confidence of 0.32. This utterance did
not contain any entities, and the absence of entities was cor-
rectly predicted with a confidence of 0.98. These results
suggest that our model exhibited uncertainty in determin-
ing the appropriate class for the utterance. This uncertainty
could be attributed to the fact that both “object-instructions”
and “object-warnings” often contain utterances formulated
in a very similar manner. However, the model’s capabil-
ities concerning entity classification tend to be highly ac-
curate with a significant confidence score. Moving to the
middle row, we encounter an utterance with an incorrect in-
tent prediction (“inform” instead of “where-object”) with a
confidence score of 0.94. This utterance contained an en-
tity of the “object” type, and the presence and class of this
entity were correctly predicted with a confidence of 0.91.
These results suggest that our model exhibited a high level
of confidence in classifying the utterance, despite its incor-
rect classification. This observation may indicate that this
particular utterance shares significant similarities with those
typically found in the “where-object” intent. Similarly, in
this instance, the model’s capabilities enable accurate entity
classification with a high confidence score. Lastly, the bot-
tom row showcases an utterance with a correct intent pre-
diction (“which-PPE-procedure”) with a confidence score



Figure 9. We reported qualitative results of our baseline based on StillFast [14] for the short-term object interaction anticipation task.

should I know more about this
object?

point me to the panel

which PPE are required for the
repair of the low voltage board?

GROUND TRUTH
INTENT

PREDICTED
INTENT
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Figure 10. Qualitative results showing two incorrect intent predictions (first two rows) and a correct prediction (last row), alongside correct
entity predictions.

Intent Entity
Training Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

real 0.867 0.840 0.867 0.844 0.994 0.965 1.0 0.981
real+G10 0.830 0.822 0.830 0.815 1.0 1.0 1.0 1.0
real+G50 0.792 0.788 0.792 0.773 1.0 1.0 1.0 1.0

real+G100 0.792 0.794 0.792 0.784 1.0 1.0 1.0 1.0
G100 0.584 0.622 0.584 0.564 1.0 1.0 1.0 1.0

Table 4. Results for intents and entities classification considering different sets of training data.

of 0.91. This utterance featured entities of both “procedure”
and “board” types, and the presence and classes of these
entities were correctly predicted with confidence scores of
0.74 and 0.96, respectively. These results suggest that our
model exhibited a high level of confidence in classifying
the utterance, and its classification was indeed correct. Ul-
timately, in this latter scenario as well, the model’s capa-
bilities enable accurate entity classification, resulting in a
confidence score ranging from moderate to high.
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